20 research outputs found

    Work engagement, emotional exhaustion, and OCB-civic virtue among nurses: a multilevel analysis of emotional supervisor support

    Get PDF
    Introduction: This study investigates the moderating role of supervisor emotional support at the group level on the relationship between emotional exhaustion and work engagement with organizational citizenship behavior-civic virtue (OCB-civic virtue) at the individual level among nurses. Method: A cross-sectional study was carried out on 558 nurses nested in 36 working units from two hospitals in Algiers. A multilevel analysis using Hierarchical Linear Modeling was performed. Results: Results show that the positive effect of work engagement on OCB-civic virtue was moderated by supervisor emotional support at group level. The nurses emotional exhaustion and OCB-civic virtue negative relationship at the individual level is buffered by supervisor emotional support at group level. Discussion: In consequence, supervisor emotional support experienced by the team has an influence on the emotional exhaustion and work engagement OCB-civic virtue relationship

    Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen

    Get PDF
    Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reefbuilding corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase 15N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. IMPORTANCE The methodology applied, combining transmission electron microscopy with nanoscale secondary-ion mass spectrometry (NanoSIMS) imaging of coral tissue labeled with stable isotope tracers, allows quantification and submicrometric localization of metabolic fluxes in an intact symbiosis. This study opens the way for investigations of physiological adaptations of symbiotic systems to nutrient availability and for increasing knowledge of global nitrogen and carbon biogeochemical cycling. © 2013 Kopp et al

    Scleractinian coral cell proliferation is reduced in primary culture of suspended multicellular aggregates compared to polyps

    No full text
    Cell cultures from reef-building scleractinian corals are being developed to study the response of these ecologically important organisms to environmental stress and diseases. Despite the importance of cell division to support propagation, cell proliferation in polyps and in vitro is under-investigated. In this study, suspended multicellular aggregates (tissue balls) were obtained after collagenase dissociation of Pocillopora damicornis coral, with varying yields between enzyme types and brands. Ultrastructure and cell type distribution were characterized in the tissue balls (TBs) compared to the polyp. Morphological evidence of cellular metabolic activity in their ciliated cortex and autophagy in their central mass suggests involvement of active tissue reorganization processes. DNA synthesis was evaluated in the forming multicellular aggregates and in the four cell layers of the polyp, using BrdU labeling of nuclei over a 24 h period. The distribution of BrdU-labeled coral cells was spatially heterogeneous and their proportion was very low in tissue balls (0.2 +/- A 0.1 %), indicating that suspended multicellular aggregate formation does not involve significant cell division. In polyps, DNA synthesis was significantly lower in the calicoderm (< 1 %) compared to both oral and aboral gastroderm (about 10 %) and to the pseudostratified oral epithelium (15-25 % at tip of tentacle). DNA synthesis in the endosymbiotic dinoflagellates dropped in the forming tissue balls (2.7 +/- A 1.2 %) compared to the polyp (14 +/- A 3.4 %) where it was not different from the host gastroderm (10.3 +/- A 1.2 %). A transient (24 h) increase was observed in the cell-specific density of dinoflagellates in individually dissociated coral cell cultures. These results suggest disruption of coral cell proliferation processes upon establishment in primary culture

    Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean)

    No full text
    The saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean) is dominated by the bloom-forming cyanobacterium Arthrospira. However, the rest of the phototrophic community remains underexplored because of their minute dimension or lower biomass. To characterize the phototrophic microorganisms living in this ecosystem considered as a modern analog of Precambrian environments, several strains were isolated from the water column and stromatolites, and analyzed using the polyphasic approach. Based on morphological, ultrastructural and molecular (16S rRNA gene, 18S rRNA gene, 16S-23S ITS region, cpcBA-IGS locus) methods, seven filamentous cyanobacteria and the prasinophyte Picocystis salinarum were identified. Two new genera and four new cyanobacteria species belonging to the orders Oscillatoriales (Desertifilum dzianense sp. nov.) and Synechococcales (Sodalinema komarekii gen. nov., sp. nov., Sodaleptolyngbya stromatolitii gen. nov., sp. nov. and Haloleptolyngbya elongata sp. nov.) were described. This approach also allowed to identify Arthrospira fusiformis with exclusively straight trichomes instead of the spirally coiled form commonly observed in the genus. This study evidenced the importance of using the polyphasic approach to solve the complex taxonomy of cyanobacteria and to study algal assemblages from unexplored ecosystems

    Spontaneous calcium oscillations and nuclear PLC-beta1 in human GV oocytes

    No full text
    Our aim was to investigate if human oocytes, like mouse oocytes, exhibit spontaneous Ca(2+) oscillations and nuclear translocation of PLC-beta1 prior to germinal vesicle breakdown (GVBD), and to correlate these events with the evolution of chromatin configuration as a landmark for the meiosis resumption kinetics. Human germinal vesicle (GV) oocytes were either loaded with Fluo-3 probe to record Ca(2+) signals or fixed for subsequent fluorescent labeling of both chromatin and PLC-beta1, and immunogold labeling of PLC-beta1. Here for the first time, we show that human oocytes at the GV-stage exhibit spontaneous Ca(2+) oscillations. Interestingly, only oocytes with a large diameter and characterized by a compact chromatin surrounding the nucleolus of the GV could reveal these kind of oscillations. We also observed a translocation of PLC-beta1 from the cytoplasm towards the nucleus during in vitro maturation of human oocytes. Spontaneous calcium oscillations and nuclear translocation of PLC-beta1 may reflect some degree of oocyte maturity. The impact of our results may be very helpful to understand and resolve many enigmatic problems usually encountered during the in vitro meiotic maturation of human GV oocytes

    Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia

    No full text
    International audienceThe biomineralization process and skeletal growth dynamics of azooxanthellate corals are poorly known. Here, the growth rate of the shallow-water dendrophyllid scleractinian coral Balanophyllia regia was evaluated with calcein-labeling experiments that showed higher lateral than vertical extension. The structure, mineralogy and trace element composition of the skeleton were characterized at high spatial resolution. The epitheca and basal floor had the same ultrastructural organization as septa, indicating a common biological control over their formation. In all of these aragonitic skeletal structures, two main ultrastructural components were present: “centers of calcification” (COC) also called rapid accretion deposits (RAD) and “fibers” (thickening deposits, TD). Heterogeneity in the trace element composition, i.e., the Sr/Ca and Mg/Ca ratios, was correlated with the ultrastructural organization: magnesium was enriched by a factor three in the rapid accretion deposits compared with the thickening deposits. At the interface with the skeleton, the skeletogenic tissue (calicoblastic epithelium) was characterized by heterogeneity of cell types, with chromophile cells distributed in clusters regularly spaced between calicoblasts. Cytoplasmic extensions at the apical surface of the calicoblastic epithelium created a three-dimensional organization that could be related to the skeletal surface microarchitecture. Combined measurements of growth rate and skeletal ultrastructural increments suggest that azooxanthellate shallow-water corals produce well-defined daily growth step
    corecore