29 research outputs found

    Single-nucleotide polymorphism associations with preterm delivery: a case-control replication study and meta-analysis

    Get PDF
    BackgroundThe aim of this study was to replicate single-nucleotide polymorphism (SNP) associations with preterm birth (PTB; birth at MethodsSpontaneous PTB cases and controls were selected from an existing cohort. Candidate SNPs were taken from an existing genotype panel. A systematic review was conducted for each SNP in the panel to determine suitability as a PTB candidate. Those with significant associations previously reported in Caucasians were selected for replication. Candidate SNPs were already genotyped in cases and controls and clinical data were accessed from state perinatal and cerebral palsy databases. Association analysis was conducted between each SNP and PTB, and meta-analysis was conducted if there were ≥ 3 studies in the literature. Maternal and fetal SNPs were considered as separate candidates.ResultsA cohort of 170 cases and 583 controls was formed. Eight SNPs from the original panel of genotyped SNPs were selected as PTB candidates and for replication on the basis of systematic literature review results. In our cohort, fetal factor V Leiden (FVL) was significantly associated with PTB (odds ratio (OR): 2.6, 95% confidence interval (CI): 1.31-5.17), and meta-analysis confirmed this association (OR: 2.71, 95% CI: 1.15-6.4).ConclusionReplication and meta-analysis support an increased risk of PTB in Caucasians with the fetal FVL mutation.Michael E. O’Callaghan, Alastair H. MacLennan, Gai L. McMichael, Eric A. Haan and Gustaaf A. Dekke

    Differences in Gene Expression between First and Third Trimester Human Placenta: A Microarray Study

    Get PDF
    BACKGROUND: The human placenta is a rapidly developing organ that undergoes structural and functional changes throughout the pregnancy. Our objectives were to investigate the differences in global gene expression profile, the expression of imprinted genes and the effect of smoking in first and third trimester normal human placentas. MATERIALS AND METHODS: Placental samples were collected from 21 women with uncomplicated pregnancies delivered at term and 16 healthy women undergoing termination of pregnancy at 9-12 weeks gestation. Placental gene expression profile was evaluated by Human Genome Survey Microarray v.2.0 (Applied Biosystems) and real-time polymerase chain reaction. RESULTS: Almost 25% of the genes spotted on the array (n = 7519) were differentially expressed between first and third trimester placentas. Genes regulating biological processes involved in cell proliferation, cell differentiation and angiogenesis were up-regulated in the first trimester; whereas cell surface receptor mediated signal transduction, G-protein mediated signalling, ion transport, neuronal activities and chemosensory perception were up-regulated in the third trimester. Pathway analysis showed that brain and placenta might share common developmental routes. Principal component analysis based on the expression of 17 imprinted genes showed a clear separation of first and third trimester placentas, indicating that epigenetic modifications occur throughout pregnancy. In smokers, a set of genes encoding oxidoreductases were differentially expressed in both trimesters. CONCLUSIONS: Differences in global gene expression profile between first and third trimester human placenta reflect temporal changes in placental structure and function. Epigenetic rearrangements in the human placenta seem to occur across gestation, indicating the importance of environmental influence in the developing feto-placental unit

    Early pregnancy peripheral blood gene expression and risk of preterm delivery: a nested case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm delivery (PTD) is a significant public health problem associated with greater risk of mortality and morbidity in infants and mothers. Pathophysiologic processes that may lead to PTD start early in pregnancy. We investigated early pregnancy peripheral blood global gene expression and PTD risk.</p> <p>Methods</p> <p>As part of a prospective study, ribonucleic acid was extracted from blood samples (collected at 16 weeks gestational age) from 14 women who had PTD (cases) and 16 women who delivered at term (controls). Gene expressions were measured using the GeneChip<sup>® </sup>Human Genome U133 Plus 2.0 Array. Student's T-test and fold change analysis were used to identify differentially expressed genes. We used hierarchical clustering and principle components analysis to characterize signature gene expression patterns among cases and controls. Pathway and promoter sequence analyses were used to investigate functions and functional relationships as well as regulatory regions of differentially expressed genes.</p> <p>Results</p> <p>A total of 209 genes, including potential candidate genes (e.g. PTGDS, prostaglandin D2 synthase 21 kDa), were differentially expressed. A set of these genes achieved accurate pre-diagnostic separation of cases and controls. These genes participate in functions related to immune system and inflammation, organ development, metabolism (lipid, carbohydrate and amino acid) and cell signaling. Binding sites of putative transcription factors such as EGR1 (early growth response 1), TFAP2A (transcription factor AP2A), Sp1 (specificity protein 1) and Sp3 (specificity protein 3) were over represented in promoter regions of differentially expressed genes. Real-time PCR confirmed microarray expression measurements of selected genes.</p> <p>Conclusions</p> <p>PTD is associated with maternal early pregnancy peripheral blood gene expression changes. Maternal early pregnancy peripheral blood gene expression patterns may be useful for better understanding of PTD pathophysiology and PTD risk prediction.</p

    All Our Babies Cohort Study: recruitment of a cohort to predict women at risk of preterm birth through the examination of gene expression profiles and the environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm birth is the leading cause of perinatal morbidity and mortality. Risk factors for preterm birth include a personal or familial history of preterm delivery, ethnicity and low socioeconomic status yet the ability to predict preterm delivery before the onset of preterm labour evades clinical practice. Evidence suggests that genetics may play a role in the multi-factorial pathophysiology of preterm birth. The All Our Babies Study is an on-going community based longitudinal cohort study that was designed to establish a cohort of women to investigate how a women's genetics and environment contribute to the pathophysiology of preterm birth. Specifically this study will examine the predictive potential of maternal leukocytes for predicting preterm birth in non-labouring women through the examination of gene expression profiles and gene-environment interactions.</p> <p>Methods/Design</p> <p>Collaborations have been established between clinical lab services, the provincial health service provider and researchers to create an interdisciplinary study design for the All Our Babies Study. A birth cohort of 2000 women has been established to address this research question. Women provide informed consent for blood sample collection, linkage to medical records and complete questionnaires related to prenatal health, service utilization, social support, emotional and physical health, demographics, and breast and infant feeding. Maternal blood samples are collected in PAXgene™ RNA tubes between 18-22 and 28-32 weeks gestation for transcriptomic analyses.</p> <p>Discussion</p> <p>The All Our Babies Study is an example of how investment in clinical-academic-community partnerships can improve research efficiency and accelerate the recruitment and data collection phases of a study. Establishing these partnerships during the study design phase and maintaining these relationships through the duration of the study provides the unique opportunity to investigate the multi-causal factors of preterm birth. The overall All Our Babies Study results can potentially lead to healthier pregnancies, mothers, infants and children.</p
    corecore