893 research outputs found

    An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime

    Full text link
    The problem of determining the electromagnetic and gravitational ``self-force'' on a particle in a curved spacetime is investigated using an axiomatic approach. In the electromagnetic case, our key postulate is a ``comparison axiom'', which states that whenever two particles of the same charge ee have the same magnitude of acceleration, the difference in their self-force is given by the ordinary Lorentz force of the difference in their (suitably compared) electromagnetic fields. We thereby derive an expression for the electromagnetic self-force which agrees with that of DeWitt and Brehme as corrected by Hobbs. Despite several important differences, our analysis of the gravitational self-force proceeds in close parallel with the electromagnetic case. In the gravitational case, our final expression for the (reduced order) equations of motion shows that the deviation from geodesic motion arises entirely from a ``tail term'', in agreement with recent results of Mino et al. Throughout the paper, we take the view that ``point particles'' do not make sense as fundamental objects, but that ``point particle equations of motion'' do make sense as means of encoding information about the motion of an extended body in the limit where not only the size but also the charge and mass of the body go to zero at a suitable rate. Plausibility arguments for the validity of our comparison axiom are given by considering the limiting behavior of the self-force on extended bodies.Comment: 37 pages, LaTeX with style package RevTeX 3.

    Aerodynamic roughness of glacial ice surfaces derived from high-resolution topographic data

    Get PDF
    This paper presents new methods of estimating the aerodynamic roughness (z0) of glacier ice directly from three-dimensional point clouds and digital elevation models (DEMs), examines temporal variability of z0, and presents the first fully distributed map of z0 estimates across the ablation zone of an Arctic glacier. The aerodynamic roughness of glacier ice surfaces is an important component of energy balance models and meltwater runoff estimates through its influence on turbulent fluxes of latent and sensible heat. In a warming climate these fluxes are predicted to become more significant in contributing to overall melt volumes. Ice z0 is commonly estimated from measurements of ice surface microtopography, typically from topographic profiles taken perpendicular to the prevailing wind direction. Recent advances in surveying permit rapid acquisition of high-resolution topographic data allowing revision of assumptions underlying conventional z0 measurement. Using Structure from Motion (SfM) photogrammetry with Multi-View Stereo (MVS) to survey ice surfaces with millimeter-scale accuracy, z0 variation over 3 orders of magnitude was observed. Different surface types demonstrated different temporal trajectories in z0 through 3 days of intense melt. A glacier-scale 2 m resolution DEM was obtained through terrestrial laser scanning (TLS), and subgrid roughness was significantly related to plot-scale z0. Thus, we show for the first time that glacier-scale TLS or SfM-MVS surveys can characterize z0 variability over a glacier surface potentially leading to distributed representations of z0 in surface energy balance models

    Aspects of Type IIB Theory on ALE Spaces

    Get PDF
    D-brane technology and strong/weak coupling duality supplement traditional orbifold techniques by making certain background geometries more accessible. In this spirit, we consider some of the geometric properties of the type IIB theory on R^6 \times M where M is an `Asymptotically Locally Euclidean (ALE)' gravitational instanton. Given the self-duality of the theory, we can extract the geometry (both singular and resolved) seen by the weakly coupled IIB string by studying the physics of a D1-brane probe. The construction is both amusing and instructive, as the physics of the probe completely captures the mathematics of the construction of ALE instantons via `HyperKahler Quotients', as presented by Kronheimer. This relation has been noted by Douglas and Moore for the A-series. We extend the explicit construction to the case of the D- and E-series -- uncovering a quite beautiful structure -- and highlight how all of the elements of the mathematical construction find their counterparts in the physics of the type IIB D-string. We discuss the explicit ALE metrics which may be obtained using these techniques, and comment on the role duality plays in relating gauged linear sigma models to conformal field theories.Comment: 27 pages, three figures. Uses harvmac.tex and epsf.tex (sentences corrected on pages 13+14, reference added, small addition to final remarks

    Picturing classical and quantum Bayesian inference

    Full text link
    We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer's calculus of `conditional density operators'. The notion of conditional independence is also generalized to our graphical setting and we make some preliminary connections to the theory of Bayesian networks. Finally, we demonstrate how to construct a graphical Bayesian calculus within any dagger compact category.Comment: 38 pages, lots of picture

    BIMP‐Catalyzed 1,3‐Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones

    Get PDF
    A bifunctional iminophosphorane (BIMP)‐catalysed enantioselective synthesis of α,ÎČ‐unsaturated cyclohexenones through a facially selective 1,3‐prototropic shift of ÎČ,γ‐unsaturated prochiral isomers, under mild reaction conditions and in short reaction times, on a range of structurally diverse substrates, is reported. α,ÎČ‐Unsaturated cyclohexenone products primed for downstream derivatisation were obtained in high yields (up to 99 %) and consistently high enantioselectivity (up to 99 % ee). Computational studies into the reaction mechanism and origins of enantioselectivity, including multivariate linear regression of TS energy, were carried out and the obtained data were found to be in good agreement with experimental findings

    Polynitroxylated Pegylated Hemoglobin: A Novel Neuroprotective Hemoglobin for Acute Volume-Limited Fluid Resuscitation After Combined Traumatic Brain Injury and Hemorrhagic Hypotension in Mice

    Get PDF
    Objective: Resuscitation of hemorrhagic hypotension after traumatic brain injury is challenging. A hemoglobin-based oxygen carrier may offer advantages. The novel therapeutic hemoglobin-based oxygen carrier, polynitroxylated pegylated hemoglobin (PNPH), may represent a neuroprotective hemoglobin-based oxygen carrier for traumatic brain injury resuscitation.Hypotheses: 1) PNPH is a unique non-neurotoxic hemoglobin-based oxygen carrier in neuronal culture and is neuroprotective in in vitro neuronal injury models. 2) Resuscitation with PNPH would require less volume to restore mean arterial blood pressure than lactated Ringer\u27s or Hextend and confer neuroprotection in a mouse model of traumatic brain injury plus hemorrhagic hypotension.Design: Prospective randomized, controlled experimental study.Setting: University center.Measurements and Main Results: In rat primary cortical neuron cultures, control bovine hemoglobin was neurotoxic (lactate dehydrogenase release; 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide assay) at concentrations from 12.5 to 0.625 [mu]M, whereas polyethylene glycol-conjugated hemoglobin showed intermediate toxicity. PNPH was not neurotoxic (p \u3c .05 vs. bovine hemoglobin and polyethylene glycol hemoglobin; all concentrations). PNPH conferred neuroprotection in in vitro neuronal injury (glutamate/glycine exposure and neuronal stretch), as assessed via lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide (all p \u3c .05 vs. control). C57BL6 mice received controlled cortical impact followed by hemorrhagic hypotension (2 mL/100 g, mean arterial blood pressure ~35-40 mm Hg) for 90 min. Mice were resuscitated (mean arterial blood pressure \u3e50 mm Hg for 30 min) with lactated Ringer\u27s, Hextend, or PNPH, and then shed blood was reinfused. Mean arterial blood pressures, resuscitation volumes, blood gasses, glucose, and lactate were recorded. Brain sections at 7 days were examined via hematoxylin and eosin and Fluoro-Jade C (identifying dying neurons) staining in CA1 and CA3 hippocampus. Resuscitation with PNPH or Hextend required less volume than lactated Ringer\u27s (both p \u3c .05). PNPH but not Hextend improved mean arterial blood pressure vs. lactated Ringer\u27s (p \u3c .05). Mice resuscitated with PNPH had fewer Fluoro-Jade C positive neurons in CA1 vs. Hextend and lactated Ringer\u27s, and CA3 vs. Hextend (p \u3c .05).Conclusions: PNPH is a novel neuroprotective hemoglobin-based oxygen carrier in vitro and in vivo that may offer unique advantages for traumatic brain injury resuscitation

    A Conformal Field Theory of a Rotating Dyon

    Get PDF
    A conformal field theory representing a four-dimensional classical solution of heterotic string theory is presented. The low-energy limit of this solution has U(1) electric and magnetic charges, and also nontrivial axion and dilaton fields. The low-energy metric contains mass, NUT and rotation parameters. We demonstrate that this solution corresponds to part of an extremal limit of the Kerr-Taub-NUT dyon solution. This limit displays interesting `remnant' behaviour, in that asymptotically far away from the dyon the angular momentum vanishes, but far down the infinite throat in the neighbourhood of the horizon (described by our CFT) there is a non-zero angular velocity. A further natural generalization of the CFT to include an additional parameter is presented, but the full physical interpretation of its role in the resulting low energy solution is unclear.Comment: 43 pages, Plain TEX + epsf.tex for one uuencoded figure

    Sherman, Shakers, and Shenanigans

    Get PDF
    The first 122 pages of this book relate to Bulloch County and form Book 10: Readings in Bulloch County History. The remainder comprise the Southern Folkways Journal Review No. 3, and relate to Southeast Georgia and to the Southeastern region of the United States. The first collection begins with a poem by Dr. John Ransom Lewis, followed by three articles on Dan Bland and the biographies of prominent African American citizens. Also included are two articles on the Hardy Moore family, student papers on vanishing Bulloch County communities, information on Joseph Jackson, articles on three local churches, and the Muster Roll of Toombs Guards. The second section of this book begins with an article on Western Shakers by Dr. Dale Covington, followed by “Hostau Reminisces,” and several articles on the Cherokee and the Lumbee Indians.https://digitalcommons.georgiasouthern.edu/bchs-pubs/1033/thumbnail.jp

    Bodyweight Perceptions among Texas Women: The Effects of Religion, Race/Ethnicity, and Citizenship Status

    Full text link
    Despite previous work exploring linkages between religious participation and health, little research has looked at the role of religion in affecting bodyweight perceptions. Using the theoretical model developed by Levin et al. (Sociol Q 36(1):157–173, 1995) on the multidimensionality of religious participation, we develop several hypotheses and test them by using data from the 2004 Survey of Texas Adults. We estimate multinomial logistic regression models to determine the relative risk of women perceiving themselves as overweight. Results indicate that religious attendance lowers risk of women perceiving themselves as very overweight. Citizenship status was an important factor for Latinas, with noncitizens being less likely to see themselves as overweight. We also test interaction effects between religion and race. Religious attendance and prayer have a moderating effect among Latina non-citizens so that among these women, attendance and prayer intensify perceptions of feeling less overweight when compared to their white counterparts. Among African American women, the effect of increased church attendance leads to perceptions of being overweight. Prayer is also a correlate of overweight perceptions but only among African American women. We close with a discussion that highlights key implications from our findings, note study limitations, and several promising avenues for future research
    • 

    corecore