14 research outputs found
Purificació catalÃtica d'hidrogen en microcanals
En aquest treball mostrem el funcionament d'un microdispositiu catalÃtic dissenyat al nostre grup de recerca per purificar de manera catalÃtica i selectiva monòxid de carboni en presència d'hidrogen. Hem aconseguit desenvolupar un mètode per recobrir amb èxit els seus canals, d'entre 2 i 4 μm de dià metre, amb una capa homogènia d'òxid de titani de només uns
100 nm de gruix. Sobre aquesta fina capa s'han ancorat unes nanopartÃcules d'or innovadores embolcallades amb lligands rics en silici que presenten una gran estabilitat i activitat per oxidar selectivament el monòxid de carboni (CO-PrOx) en un rang de temperatures comprès entre els 363 i els 473 K. El microreactor representa una intensificació del procés d'oxidació selectiva de CO i, grà cies a la reducció d'escala obtinguda
en aquesta microestructura (en comparació amb reactors de parets catalÃtiques convencionals), s'han obtingut activitats especÃfiques (quantitat de CO convertit per unitat de volum de reactor) cent vegades majors treballant a la mateixa temperatura i amb les mateixes mescles d'alimentació.
AixÃ, doncs, el microreactor desenvolupat resulta molt atractiu per realitzar la reacció de CO-PrOx a microescala i per ser combinat amb una etapa de reformació prèvia. L'acoblament d'ambdós processos per alimentar piles de combustible de baixa temperatura ofereix noves possibilitats dins del món de la tecnologia del vector hidrogen i, en concret, per a aplicacions de petita escala i portà tils.This paper describes the operation of a catalytic microdevice designed by our research group to catalytically and selectively purify carbon monoxide in the presence of hydrogen. We have developed a method of successfully coating channels of only 2-4 μm in diameter with a homogenous 100 nm-thick titanium oxide layer. Novel gold nanoparticles protected with a Si-rich shell have been anchored onto this thin layer. The gold nanoparticles show great stability and activity in preferentially
oxidizing carbon monoxide (CO-PrOx) in a temperature range of 363 to 473 K. The microreactor intensifies the CO selective oxidation process. Due to the scale reduction achieved in this structure (compared to conventional catalytic wall reactors), specific activities (amount of converted CO per reactor volume) that are 100
times larger were obtained, operating at the same temperature level and with the same feed mixtures.
Consequently, this microreactor is very interesting for performance of the CO-PrOx reaction at microscale and for combination with a preliminary reforming stage. The connection of both processes to feed low-temperature fuel cells offers new
possibilities in hydrogen technology and, particularly, in small-scale and portable applications
CO Total and preferential oxidation over stable Au/TiO2 catalysts derived from preformed au nanoparticles
CO preferential oxidation (PROX) is an effective method to clean reformate H2 streams to feed low-temperature fuel cells. In this work, the PROX and CO oxidation reactions were studied on preformed Au nanoparticles (NPs) supported on TiO2 anatase. Preformed Au NPs were obtained from gold cores stabilized by dodecanethiols or trimethylsilane-dendrons. A well-controlled size of ca. 2.6 nm and narrow size distributions were achieved by this procedure. The catalysts were characterized by high-resolution transmission electron microscopy and ex situ and in situ X-ray photoelectron spectroscopy (XPS). The XPS results showed that the preformed Au NPs exhibited high thermal stability. The different ligand-derived Au catalysts, as well as a conventional gold catalyst for comparison purposes, were loaded onto cordierite supports with 400 cells per square inch. The activity and selectivity of the samples were evaluated for various operation conditions. The catalyst prepared using dodecanethiol-capped Au NPs showed the best performance. In fact, CO conversions of up to 70% at 40% CO2 selectivity and 90% O2 conversion were observed operating at 363 K in H2-rich atmospheres. The performance of the best catalysts was subsequently tested on stainless steel microreactors. A 500-hour stability test was carried out under a real post-reformate stream, including 18 vol.% CO2 and 29 vol.% H2O. A mean CO conversion of ca. 24% was measured for the whole test operating at 453 K and a gas hourly space velocity (GHSV) of 1.3 × 104 h−1. These results reveal our dodecanethiol-and carbosilane-derived Au catalysts as extremely promising candidates to conduct a PROX reaction while avoiding deactivation, which is one of the major drawbacks of Au/TiO2 catalysts.Fil: Divins, Núria J.. Universidad Politécnica de Catalunya; EspañaFil: Lopez, Eduardo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - BahÃa Blanca. Planta Piloto de IngenierÃa QuÃmica. Universidad Nacional del Sur. Planta Piloto de IngenierÃa QuÃmica; ArgentinaFil: Angurell, Inmaculada. Universidad de Barcelona. Facultad de QuÃmica; EspañaFil: Neuberg, Stefan. Fraunhofer Institute of Microengineering and Microsystems; AlemaniaFil: Zapf, Ralf. Fraunhofer Institute of Microengineering and Microsystems; AlemaniaFil: Kolb, Gunther. Fraunhofer Institute of Microengineering and Microsystems; AlemaniaFil: Llorca Piqué, Jordi. Universidad Politécnica de Catalunya; Españ
CO total and Preferential Oxidation over stable Au/TiO2 catalysts derived from preformed Au nanoparticles
CO preferential oxidation (PROX) is an effective method to clean reformate H2 streams to feed low-temperature fuel cells. In this work, the PROX and CO oxidation reactions were studied on preformed Au nanoparticles (NPs) supported on TiO2 anatase. Preformed Au NPs were obtained from gold cores stabilized by dodecanethiols or trimethylsilane-dendrons. A well-controlled size of ca. 2.6 nm and narrow size distributions were achieved by this procedure. The catalysts were characterized by high-resolution transmission electron microscopy and ex situ and in situ X-ray photoelectron spectroscopy (XPS). The XPS results showed that the preformed Au NPs exhibited high thermal stability. The different ligand-derived Au catalysts, as well as a conventional gold catalyst for comparison purposes, were loaded onto cordierite supports with 400 cells per square inch. The activity and selectivity of the samples were evaluated for various operation conditions. The catalyst prepared using dodecanethiol-capped Au NPs showed the best performance. In fact, CO conversions of up to 70% at 40% CO2 selectivity and 90% O2 conversion were observed operating at 363 K in H2-rich atmospheres. The performance of the best catalysts was subsequently tested on stainless steel microreactors. A 500-hour stability test was carried out under a real post-reformate stream, including 18 vol.% CO2 and 29 vol.% H2O. A mean CO conversion of ca. 24% was measured for the whole test operating at 453 K and a gas hourly space velocity (GHSV) of 1.3 × 104 h−1. These results reveal our dodecanethiol- and carbosilane-derived Au catalysts as extremely promising candidates to conduct a PROX reaction while avoiding deactivation, which is one of the major drawbacks of Au/TiO2 catalysts
In situ investigation of the mechanochemically promoted Pd–Ce interaction under stoichiometric methane oxidation conditions
The optimization of the supported Pd phase for CH4 activation on Pd/CeO2 catalysts has been a matter
of great interest in the recent literature, aiming at the design of efficient methane abatement catalysts
for Natural Gas fueled Vehicles (NGVs). Under lean conditions, a mixed Pd0
/PdO combination has been
indicated as exhibiting the best performance, while controversial results have been reported under
stoichiometric conditions depending on the support oxide, where either Al2O3 or zeolite-based supports
are usually considered. Here, by means of synchrotron-based in situ NAP-XPS and XRD measurements,
we follow the evolution of Pd species on Pd/CeO2 samples prepared by dry mechanochemical synthesis
(M) under stoichiometric CH4 oxidation feed, unravelling a stable Pd0
/Pd2+ arrangement in a close to
1 : 1 ratio as the most active palladium state for CH4 activation when excess oxygen is not available, in
contrast to what was reported for Pd/alumina materials, where metallic Pd0 nanoparticles showed the
highest activity. The combination of NAP-XPS analysis and activity test results highlights the promotional
effect of the Pd–Ce interaction, resulting in enhanced oxygen transfer and improved activity and stability
of the Pd/CeO2 catalyst prepared by a novel mechanochemical approach even under low O2 content,
large excess of water vapor (10 vol%) and high temperature exposure (4700 1C)
Hydrogen catalytic purification in microchannels
En aquest treball mostrem el funcionament d’un microdispositiu catalític dissenyat al nostre grup de recerca per purificar de manera catalítica i selectiva monòxid de carboni en presència d’hidrogen. Hem aconseguit desenvolupar un mètode per recobrir amb èxit els seus canals, d’entre 2 i 4 μm de diàmetre, amb una capa homogènia d’òxid de titani de només uns 100 nm de gruix. Sobre aquesta fina capa s’han ancorat unes nanopartícules d’or innovadores embolcallades amb lligands rics en silici que presenten una gran estabilitat i activitat per oxidar selectivament el monòxid de carboni (CO-PrOx) en un rang de temperatures comprès entre els 363 i els 473 K. El microreactor representa una intensificació del procés d’oxidació selectiva de CO i, gràcies a la reducció d’escala obtinguda en aquesta microestructura (en comparació amb reactors de parets catalítiques convencionals), s’han obtingut activitats específiques (quantitat de CO convertit per unitat de volum de reactor) cent vegades majors treballant a la mateixa temperatura i amb les mateixes mescles d’alimentació. Així, doncs, el microreactor desenvolupat resulta molt atractiu per realitzar la reacció de CO-PrOx a microescala i per ser combinat amb una etapa de reformació prèvia. L’acoblament d’ambdós processos per alimentar piles de combustible de baixa temperatura ofereix noves possibilitats dins del món de la tecnologia del vector hidrogen i, en concret, per a aplicacions de petita escala i portàtils.Paraules clau: Hidrogen, piles de combustible, catalitzadors, purificació catalítica de CO, nanopartícules d’or.This paper describes the operation of a catalytic microdevice designed by our research group to catalytically and selectively purify carbon monoxide in the presence of hydrogen. We have developed a method of successfully coating channels of only 2-4 μm in diameter with a homogenous 100 nm-thick titanium oxide layer. Novel gold nanoparticles protected with a Si-rich shell have been anchored onto this thin layer. The gold nanoparticles show great stability and activity in preferentially oxidizing carbon monoxide (CO-PrOx) in a temperature range of 363 to 473 K. The microreactor intensifies the CO selective oxidation process. Due to the scale reduction achieved in this structure (compared to conventional catalytic wall reactors), specific activities (amount of converted CO per reactor volume) that are 100 times larger were obtained, operating at the same temperature level and with the same feed mixtures. Consequently, this microreactor is very interesting for performance of the CO-PrOx reaction at microscale and for combination with a preliminary reforming stage. The connection of both processes to feed low-temperature fuel cells offers new possibilities in hydrogen technology and, particularly, in small-scale and portable applications.Keywords: Hydrogen, fuel cells, catalysts, CO catalytic purification, gold nanoparticles
Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO2
3D-printed ceria structures have been prepared by robocasting, without using any additive, and impregnated with different amounts of Ni and Ru, characterized and tested for the catalytic decomposition of ammonia in a fixed bed reactor. The best catalytic performance has been achieved with an active phase of 0.5Ni0.1Ru (w/w%). A kinetic expression has been obtained using a crushed catalytic structure, which has been employed in a 1D model to simulate the behaviour of the Ni-Ru impregnated 3D-printed ceria structures. The results have been compared with the experimental data to validate the proposed model. A series of simulations have been performed to determine the relationship between the geometric parameters of the 3D-printed structures and their catalytic performance in the ammonia decomposition, in order to optimize the catalytic structure with the aim of supplying the hydrogen produced to a PEM-type fuel cell.Fil: Lucentini, Ilaria. Universidad Politécnica de Catalunya; EspañaFil: Garcia Colli, Germán. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de IngenierÃa; ArgentinaFil: Luzi, Carlos Daniel. Universidad Nacional de La Plata. Facultad de IngenierÃa; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Serrano, Isabel. Universidad Politécnica de Catalunya; EspañaFil: Soler, LluÃs. Universidad Politécnica de Catalunya; EspañaFil: Divins, Núria J.. Universidad Politécnica de Catalunya; EspañaFil: Martinez, Osvaldo Miguel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de IngenierÃa; ArgentinaFil: Llorca Piqué, Jordi. Universidad Politécnica de Catalunya; Españ