7 research outputs found

    Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery

    Get PDF
    The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1,2,3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1,2,3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy–entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries

    Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange

    Get PDF
    The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the upcoming v1.2 release, and has underpinned multiple scientific studies. In this work, we highlight the latest features of the API format, accompanying software tools, and provide an update on the implementation of OPTIMADE in contributing materials databases. We end by providing several use cases that demonstrate the utility of the OPTIMADE API in materials research that continue to drive its ongoing development

    Critical analysis of the response function in low-dimensional materials

    Full text link
    This is the Accepted Manuscript version of an article accepted for publication in Journal of Physics Condensed Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-648X/abea4

    Magnetic correlations in single-layer NbSe2

    No full text
    *Bölen, Emre ( Aksaray, Yazar )By means of spin-resolved density functional theory calculations using both atomic orbitals and plane-wave basis codes, we study the electronic and magnetic ground state of single-layer NbSe2. We find that, for all the functionals considered, the most stable solution in this two-dimensional (2D) superconductor is the ferrimagnetic ground state with a magnetic moment of 1.09 μBat the Nb atoms and of 0.05 μBat the Se atoms pointing in the opposite direction. Our calculations show that the ferrimagnetic state precludes the development of charge density wave (CDW) order and their coexistence in the single-layer limit, unless graphene is considered as a substrate. The spin-resolved calculated density of states (DOS), a key fingerprint of the electronic and magnetic structure of a material, unambiguously reproduces the experimental DOS measured by scanning tunneling spectroscopy in single-layer NbSe2. Our work sets magnetism into play in this prototypical correlated 2D material, which is crucial to understand the formation mechanisms of 2D superconductivity and CDW order
    corecore