56 research outputs found
Environment-induced dynamical chaos
We examine the interplay of nonlinearity of a dynamical system and thermal
fluctuation of its environment in the ``physical limit'' of small damping and
slow diffusion in a semiclassical context and show that the trajectories of
c-number variables exhibit dynamical chaos due to the thermal fluctuations of
the bath.Comment: Revtex, 4 pages and 4 figure
Breakdown of correspondence in chaotic systems: Ehrenfest versus localization times
Breakdown of quantum-classical correspondence is studied on an experimentally
realizable example of one-dimensional periodically driven system. Two relevant
time scales are identified in this system: the short Ehrenfest time t_h and the
typically much longer localization time scale T_L. It is shown that
surprisingly weak modification of the Hamiltonian may eliminate the more
dramatic symptoms of localization without effecting the more subtle but
ubiquitous and rapid loss of correspondence at t_h.Comment: 4 pages, 5 figures, replaced with a version submitted to PR
Diffusion Resonances in Action Space for an Atom Optics Kicked Rotor with Decoherence
We numerically investigate momentum diffusion rates for the pulse kicked
rotor across the quantum to classical transition as the dynamics are made more
macroscopic by increasing the total system action. For initial and late time
rates we observe an enhanced diffusion peak which shifts and scales with
changing kick strength, and we also observe distinctive peaks around quantum
resonances. Our investigations take place in the context of a system of
ultracold atoms which is coupled to its environment via spontaneous emission
decoherence, and the effects should be realisable in ongoing experiments.Comment: 4 Pages, RevTeX 4, 5 Figures. Updated Figures, Minor Changes to text,
Corrected Reference
Sub-Poissonian statistics in order-to-chaos transition
We study the phenomena at the overlap of quantum chaos and nonclassical
statistics for the time-dependent model of nonlinear oscillator. It is shown in
the framework of Mandel Q-parameter and Wigner function that the statistics of
oscillatory excitation number is drastically changed in order-to chaos
transition. The essential improvement of sub-Poissonian statistics in
comparison with an analogous one for the standard model of driven anharmonic
oscillator is observed for the regular operational regime. It is shown that in
the chaotic regime the system exhibits the range of sub- and super-Poissonian
statistics which alternate one to other depending on time intervals. Unusual
dependence of the variance of oscillatory number on the external noise level
for the chaotic dynamics is observed.Comment: 9 pages, RevTeX, 14 figure
Identifying the mechanisms underpinning recognition of structured sequences of action
© 2012 The Experimental Psychology SocietyWe present three experiments to identify the specific information sources that skilled participants use to make recognition judgements when presented with dynamic, structured stimuli. A group of less skilled
participants acted as controls. In all experiments, participants were presented with filmed stimuli containing structured action sequences. In a subsequent recognition phase, participants were presented with new and previously seen stimuli and were required to make judgements as to whether or not each sequence had been presented earlier (or were edited versions of earlier sequences). In Experiment 1,
skilled participants demonstrated superior sensitivity in recognition when viewing dynamic clips compared with static images and clips where the frames were presented in a nonsequential, randomized manner, implicating the importance of motion information when identifying familiar or unfamiliar sequences. In Experiment 2, we presented normal and mirror-reversed sequences in order to distort access to absolute motion information. Skilled participants demonstrated superior recognition sensitivity, but no significant differences were observed across viewing conditions, leading to the suggestion
that skilled participants are more likely to extract relative rather than absolute motion when making such judgements. In Experiment 3, we manipulated relative motion information by occluding several display
features for the duration of each film sequence. A significant decrement in performance was reported when centrally located features were occluded compared to those located in more peripheral positions.
Findings indicate that skilled participants are particularly sensitive to relative motion information when attempting to identify familiarity in dynamic, visual displays involving interaction between numerous features
Chaos in a double driven dissipative nonlinear oscillator
We propose an anharmonic oscillator driven by two periodic forces of
different frequencies as a new time-dependent model for investigating quantum
dissipative chaos. Our analysis is done in the frame of statistical ensemble of
quantum trajectories in quantum state diffusion approach. Quantum dynamical
manifestation of chaotic behavior, including the emergence of chaos, properties
of strange attractors, and quantum entanglement are studied by numerical
simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure
The delta-function-kicked rotor: Momentum diffusion and the quantum-classical boundary
We investigate the quantum-classical transition in the delta-kicked rotor and
the attainment of the classical limit in terms of measurement-induced
state-localization. It is possible to study the transition by fixing the
environmentally induced disturbance at a sufficiently small value, and
examining the dynamics as the system is made more macroscopic. When the system
action is relatively small, the dynamics is quantum mechanical and when the
system action is sufficiently large there is a transition to classical
behavior. The dynamics of the rotor in the region of transition, characterized
by the late-time momentum diffusion coefficient, can be strikingly different
from both the purely quantum and classical results. Remarkably, the early time
diffusive behavior of the quantum system, even when different from its
classical counterpart, is stabilized by the continuous measurement process.
This shows that such measurements can succeed in extracting essentially quantum
effects. The transition regime studied in this paper is accessible in ongoing
experiments.Comment: 8 pages, 4 figures, revtex4 (revised version contains much more
introductory material
Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models
The quantum theory of a harmonic oscillator with a time dependent frequency
arises in several important physical problems, especially in the study of
quantum field theory in an external background. While the mathematics of this
system is straightforward, several conceptual issues arise in such a study. We
present a general formalism to address some of the conceptual issues like the
emergence of classicality, definition of particle content, back reaction etc.
In particular, we parametrize the wave function in terms of a complex number
(which we call excitation parameter) and express all physically relevant
quantities in terms it. Many of the notions -- like those of particle number
density, effective Lagrangian etc., which are usually defined using asymptotic
in-out states -- are generalized as time-dependent concepts and we show that
these generalized definitions lead to useful and reasonable results. Having
developed the general formalism we apply it to several examples. Exact analytic
expressions are found for a particular toy model and approximate analytic
solutions are obtained in the extreme cases of adiabatic and highly
non-adiabatic evolution. We then work out the exact results numerically for a
variety of models and compare them with the analytic results and
approximations. The formalism is useful in addressing the question of emergence
of classicality of the quantum state, its relation to particle production and
to clarify several conceptual issues related to this. In Paper II
(arXiv:0708.1237), which is a sequel to this, the formalism will be applied to
analyze the corresponding issues in the context of quantum field theory in
background cosmological models and electric fields.Comment: RevTeX 4; 32 pages; 28 figures; first of a series of two papers, the
second being arXiv:0708.1237 [gr-qc]; high resolution figures available from
the authors on reques
Observation of the baryonic decay B \uaf 0 \u2192 \u39bc+ p \uaf K-K+
We report the observation of the baryonic decay B\uaf0\u2192\u39bc+p\uafK-K+ using a data sample of 471
7106 BB\uaf pairs produced in e+e- annihilations at s=10.58GeV. This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B(B\uaf0\u2192\u39bc+p\uafK-K+)=(2.5\ub10.4(stat)\ub10.2(syst)\ub10.6B(\u39bc+))
710-5, where the uncertainties are statistical, systematic, and due to the uncertainty of the \u39bc+\u2192pK-\u3c0+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B\uaf0\u2192\u39bc+p\uaf\u3c6, we determine the upper limit B(B\uaf0\u2192\u39bc+p\uaf\u3c6)<1.2
710-5 at 90% confidence level
- …