84 research outputs found
Synaptic Vesicles Position Complexin to Block Spontaneous Fusion
SummarySynapses continually replenish their synaptic vesicle (SV) pools while suppressing spontaneous fusion events, thus maintaining a high dynamic range in response to physiological stimuli. The presynaptic protein complexin can both promote and inhibit fusion through interactions between its α-helical domain and the SNARE complex. In addition, complexin’s C-terminal half is required for the inhibition of spontaneous fusion in worm, fly, and mouse, although the molecular mechanism remains unexplained. We show here that complexin’s C-terminal domain binds lipids through a novel protein motif, permitting complexin to inhibit spontaneous exocytosis in vivo by targeting complexin to SVs. We propose that the SV pool serves as a platform to sequester and position complexin where it can intercept the rapidly assembling SNAREs and control the rate of spontaneous fusion
Psychophysical responses to a speech stressor: Correlation of plasma beta-endorphin levels at rest and after psychological stress with thermally measured pain threshold in patients with coronary artery disease
OBJECTIVES: We tested the hypothesis that psychological stress alters plasma levels of opioid peptides and that these plasma levels are related to pain perception in patients with coronary artery disease. BACKGROUND: Public speaking psychological stress has previously been shown to be associated with silent ischemia. METHODS: After instrumentation and a 30-min rest period, venous blood samples for beta-endorphin were obtained before and immediately after psychological stress in 20 patients with coronary artery disease. Pain threshold was then assessed using a thermal probe technique at baseline and immediately after stress. Patients gave three brief speeches lasting a total of 15 min about real-life hassle situations. RESULTS: Psychological stress significantly increases plasma beta-endorphin levels (4.3 +/- 0.9 pmol/liter [mean +/- SE] at rest to 8.3 +/- 2 pmol/liter after stress, p < 0.05). There was a significant positive correlation between pain threshold and beta-endorphin levels after stress (r = 0.577, p = 0.008). This significant positive correlation was still present while rest blood pressure and change in blood pressure during stress were controlled for by analysis of covariance techniques. CONCLUSIONS: In patients with coronary artery disease and exercise-induced ischemia, public speaking produces psychological stress manifested by increased cardiovascular reactivity and causes an increase in plasma beta-endorphin levels that is significantly correlated with pain thresholds. These findings may explain the predominance of silent ischemia during psychological stress in patients with coronary artery disease
Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis
Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in yeast. Removal of cohesin is necessary for sister chromatid separation during anaphase, and this is regulated by evolutionarily conserved polo-like kinase (Cdc5 in yeast, Plk1 in humans). Here we address how high levels of cohesins at centromeric chromatin are removed. Cdc5 associates with centromeric chromatin and cohesin-associated regions. Maximum enrichment of Cdc5 in centromeric chromatin occurs during the metaphase-to-anaphase transition and coincides with the removal of chromosome-associated cohesin. Cdc5 interacts with cohesin in vivo, and cohesin is required for association of Cdc5 at centromeric chromatin. Cohesin removal from centromeric chromatin requires Cdc5 but removal at distal chromosomal arm sites does not. Our results define a novel role for Cdc5 in regulating removal of centromeric cohesins and faithful chromosome segregation
Recommended from our members
Imprinting of Hatchery-Reared Salmon to Targeted Spawning Locations: A New Embryonic Imprinting Paradigm for Hatchery Programs
Straying by hatchery-reared salmon is a major concern for conservation and recovery of many salmon populations. Fisheries managers have attempted to minimize negative ecological and genetic interactions between hatchery and wild fish by using parr-smolt acclimation facilities to ensure successful olfactory imprinting and homing fidelity. However, the effectiveness of offsite acclimation for returning adults to targeted locations has been mixed. Since laboratory and field studies indicate that the period of hatching and emergence from the natal gravel is a sensitive period for olfactory imprinting, we propose an alternative imprinting approach wherein salmon are exposed as embryos to targeted waters transferred to their rearing hatchery. To test the feasibility of this approach, we conducted a series of electrophysiological and behavioral experiments to determine whether water can be successfully transferred, stored, and treated for pathogens without jeopardizing its chemical integrity. Stream water could be frozen or stored for one week at 4° or 10° C without affecting the olfactory signature. Ultraviolet light treatment altered the responses of the olfactory epithelium to stream water; however, behavioral studies suggested that this treatment did not alter the attractiveness of this water. Finally, we describe several alternative approaches to embryonic imprinting using artificial odors
Recommended from our members
Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation
Tether proteins attach the endoplasmic reticulum (ER) to other cellular membranes, thereby creating contact sites that are proposed to form platforms for regulating lipid homeostasis and facilitating non-vesicular lipid exchange. Sterols are synthesized in the ER and transported by non-vesicular mechanisms to the plasma membrane (PM), where they represent almost half of all PM lipids and contribute critically to the barrier function of the PM. To determine whether contact sites are important for both sterol exchange between the ER and PM and intermembrane regulation of lipid metabolism, we generated Δ-super-tether (Δ-s-tether) yeast cells that lack six previously identified tethering proteins (yeast extended synatotagmin [E-Syt], vesicle-associated membrane protein [VAMP]-associated protein [VAP], and TMEM16-anoctamin homologues) as well as the presumptive tether Ice2. Despite the lack of ER-PM contacts in these cells, ER-PM sterol exchange is robust, indicating that the sterol transport machinery is either absent from or not uniquely located at contact sites. Unexpectedly, we found that the transport of exogenously supplied sterol to the ER occurs more slowly in Δ-s-tether cells than in wild-type (WT) cells. We pinpointed this defect to changes in sterol organization and transbilayer movement within the PM bilayer caused by phospholipid dysregulation, evinced by changes in the abundance and organization of PM lipids. Indeed, deletion of either OSH4, which encodes a sterol/phosphatidylinositol-4-phosphate (PI4P) exchange protein, or SAC1, which encodes a PI4P phosphatase, caused synthetic lethality in Δ-s-tether cells due to disruptions in redundant PI4P and phospholipid regulatory pathways. The growth defect of Δ-s-tether cells was rescued with an artificial "ER-PM staple," a tether assembled from unrelated non-yeast protein domains, indicating that endogenous tether proteins have nonspecific bridging functions. Finally, we discovered that sterols play a role in regulating ER-PM contact site formation. In sterol-depleted cells, levels of the yeast E-Syt tether Tcb3 were induced and ER-PM contact increased dramatically. These results support a model in which ER-PM contact sites provide a nexus for coordinating the complex interrelationship between sterols, sphingolipids, and phospholipids that maintain PM composition and integrity
Spatial patterns of mercury in biota of Adirondack, New York lakes
We studied the spatial distribution patterns of mercury (Hg) in lake water, littoral sediments, zooplankton, crayfish, fish, and common loons in 44 lakes of the Adirondacks of New York State, USA, a region that has been characterized as a “biological Hg hotspot”. Our study confirmed this pattern, finding that a substantial fraction of the lakes studied had fish and loon samples exceeding established criteria for human and wildlife health. Factors accounting for the spatial variability of Hg in lake water and biota were lake chemistry (pH, acid neutralizing capacity (ANC), percent carbon in sediments), biology (taxa presence, trophic status) and landscape characteristics (land cover class, lake elevation). Hg concentrations in zooplankton, fish and common loons were negatively associated with the lake water acid-base status (pH, ANC). Bioaccumulation factors (BAF) for methyl Hg (MeHg) increased from crayfish (mean log10 BAF = 5.7), to zooplankton (5.9), to prey fish (6.2), to larger fish (6.3), to common loons (7.2). MeHg BAF values in zooplankton, crayfish, and fish (yellow perch equivalent) all increased with increasing lake elevation. Our findings support the hypothesis that bioaccumulation of MeHg at the base of the food chain is an important controller of Hg concentrations in taxa at higher trophic levels. The characteristics of Adirondack lake-watersheds (sensitivity to acidic deposition; significant forest and wetland land cover; and low nutrient inputs) contribute to elevated Hg concentrations in aquatic biota
Models of Neptune-Mass Exoplanets: Emergent Fluxes and Albedos
There are now many known exoplanets with Msin(i) within a factor of two of
Neptune's, including the transiting planets GJ436b and HAT-P-11b. Planets in
this mass-range are different from their more massive cousins in several ways
that are relevant to their radiative properties and thermal structures. By
analogy with Neptune and Uranus, they are likely to have metal abundances that
are an order of magnitude or more greater than those of larger, more massive
planets. This increases their opacity, decreases Rayleigh scattering, and
changes their equation of state. Furthermore, their smaller radii mean that
fluxes from these planets are roughly an order of magnitude lower than those of
otherwise identical gas giant planets. Here, we compute a range of plausible
radiative equilibrium models of GJ436b and HAT-P-11b. In addition, we explore
the dependence of generic Neptune-mass planets on a range of physical
properties, including their distance from their host stars, their metallicity,
the spectral type of their stars, the redistribution of heat in their
atmospheres, and the possible presence of additional optical opacity in their
upper atmospheres.Comment: Accepted and Published in ApJ (2010 ApJ,709,149
- …