84 research outputs found

    What People Are Writing About

    Get PDF

    Synaptic Vesicles Position Complexin to Block Spontaneous Fusion

    Get PDF
    SummarySynapses continually replenish their synaptic vesicle (SV) pools while suppressing spontaneous fusion events, thus maintaining a high dynamic range in response to physiological stimuli. The presynaptic protein complexin can both promote and inhibit fusion through interactions between its α-helical domain and the SNARE complex. In addition, complexin’s C-terminal half is required for the inhibition of spontaneous fusion in worm, fly, and mouse, although the molecular mechanism remains unexplained. We show here that complexin’s C-terminal domain binds lipids through a novel protein motif, permitting complexin to inhibit spontaneous exocytosis in vivo by targeting complexin to SVs. We propose that the SV pool serves as a platform to sequester and position complexin where it can intercept the rapidly assembling SNAREs and control the rate of spontaneous fusion

    Psychophysical responses to a speech stressor: Correlation of plasma beta-endorphin levels at rest and after psychological stress with thermally measured pain threshold in patients with coronary artery disease

    Get PDF
    OBJECTIVES: We tested the hypothesis that psychological stress alters plasma levels of opioid peptides and that these plasma levels are related to pain perception in patients with coronary artery disease. BACKGROUND: Public speaking psychological stress has previously been shown to be associated with silent ischemia. METHODS: After instrumentation and a 30-min rest period, venous blood samples for beta-endorphin were obtained before and immediately after psychological stress in 20 patients with coronary artery disease. Pain threshold was then assessed using a thermal probe technique at baseline and immediately after stress. Patients gave three brief speeches lasting a total of 15 min about real-life hassle situations. RESULTS: Psychological stress significantly increases plasma beta-endorphin levels (4.3 +/- 0.9 pmol/liter [mean +/- SE] at rest to 8.3 +/- 2 pmol/liter after stress, p < 0.05). There was a significant positive correlation between pain threshold and beta-endorphin levels after stress (r = 0.577, p = 0.008). This significant positive correlation was still present while rest blood pressure and change in blood pressure during stress were controlled for by analysis of covariance techniques. CONCLUSIONS: In patients with coronary artery disease and exercise-induced ischemia, public speaking produces psychological stress manifested by increased cardiovascular reactivity and causes an increase in plasma beta-endorphin levels that is significantly correlated with pain thresholds. These findings may explain the predominance of silent ischemia during psychological stress in patients with coronary artery disease

    Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis

    Get PDF
    Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in yeast. Removal of cohesin is necessary for sister chromatid separation during anaphase, and this is regulated by evolutionarily conserved polo-like kinase (Cdc5 in yeast, Plk1 in humans). Here we address how high levels of cohesins at centromeric chromatin are removed. Cdc5 associates with centromeric chromatin and cohesin-associated regions. Maximum enrichment of Cdc5 in centromeric chromatin occurs during the metaphase-to-anaphase transition and coincides with the removal of chromosome-associated cohesin. Cdc5 interacts with cohesin in vivo, and cohesin is required for association of Cdc5 at centromeric chromatin. Cohesin removal from centromeric chromatin requires Cdc5 but removal at distal chromosomal arm sites does not. Our results define a novel role for Cdc5 in regulating removal of centromeric cohesins and faithful chromosome segregation

    Spatial patterns of mercury in biota of Adirondack, New York lakes

    Get PDF
    We studied the spatial distribution patterns of mercury (Hg) in lake water, littoral sediments, zooplankton, crayfish, fish, and common loons in 44 lakes of the Adirondacks of New York State, USA, a region that has been characterized as a “biological Hg hotspot”. Our study confirmed this pattern, finding that a substantial fraction of the lakes studied had fish and loon samples exceeding established criteria for human and wildlife health. Factors accounting for the spatial variability of Hg in lake water and biota were lake chemistry (pH, acid neutralizing capacity (ANC), percent carbon in sediments), biology (taxa presence, trophic status) and landscape characteristics (land cover class, lake elevation). Hg concentrations in zooplankton, fish and common loons were negatively associated with the lake water acid-base status (pH, ANC). Bioaccumulation factors (BAF) for methyl Hg (MeHg) increased from crayfish (mean log10 BAF = 5.7), to zooplankton (5.9), to prey fish (6.2), to larger fish (6.3), to common loons (7.2). MeHg BAF values in zooplankton, crayfish, and fish (yellow perch equivalent) all increased with increasing lake elevation. Our findings support the hypothesis that bioaccumulation of MeHg at the base of the food chain is an important controller of Hg concentrations in taxa at higher trophic levels. The characteristics of Adirondack lake-watersheds (sensitivity to acidic deposition; significant forest and wetland land cover; and low nutrient inputs) contribute to elevated Hg concentrations in aquatic biota

    Models of Neptune-Mass Exoplanets: Emergent Fluxes and Albedos

    Full text link
    There are now many known exoplanets with Msin(i) within a factor of two of Neptune's, including the transiting planets GJ436b and HAT-P-11b. Planets in this mass-range are different from their more massive cousins in several ways that are relevant to their radiative properties and thermal structures. By analogy with Neptune and Uranus, they are likely to have metal abundances that are an order of magnitude or more greater than those of larger, more massive planets. This increases their opacity, decreases Rayleigh scattering, and changes their equation of state. Furthermore, their smaller radii mean that fluxes from these planets are roughly an order of magnitude lower than those of otherwise identical gas giant planets. Here, we compute a range of plausible radiative equilibrium models of GJ436b and HAT-P-11b. In addition, we explore the dependence of generic Neptune-mass planets on a range of physical properties, including their distance from their host stars, their metallicity, the spectral type of their stars, the redistribution of heat in their atmospheres, and the possible presence of additional optical opacity in their upper atmospheres.Comment: Accepted and Published in ApJ (2010 ApJ,709,149

    Behavioral Corporate Finance: An Updated Survey

    Full text link
    corecore