63 research outputs found

    Beitrag zur Berechnung von Haftkräften auf rauen Oberflächen am Beispiel keramischer Filtersysteme bei der Metallschmelzefiltration

    Get PDF
    Diese Arbeit setzt sich mit der Messung und Modellierung von Haftkräften auf rauen Oberflächen auseinander, wobei Filtermaterialien aus dem Sonderforschungsbereich 920 mittels Rasterkraftmikroskopie-Methoden untersucht wurden. Durch eine Vielzahl an Haftkraftmessungen konnte gezeigt werden, dass für schlecht benetzende Oberflächen die Rauheit zur Erhöhung der attraktiven Kräfte führt, da vermehrt mit Kapillarwechselwirkungen zu rechnen ist. Aus diesem Grund erfolgte eine Charakterisierung der Oberflächenmorphologien der Filtermaterialproben und eine kritische Bewertung von Modellen, welche aus Kontaktwinkeldaten die Oberflächenenergien ermitteln. Im Modellierungsteil der Arbeit wurden gängige van der Waals-Kraftmodelle mit Berücksichtigung von Retardationseffekten untersucht. Weiterhin wurden AFM-Scans mit dem Schichtmodell von Dagastine verbunden sowie für die Bewertung von Kapillarkraftmodellen verwendet.:Abbildungsverzeichnis Tabellenverzeichnis 1 Einleitung 2 Stand der Technik 2.1 Reinigung von Metallschmelzen 2.1.1 Stellung des Sonderforschungsbereichs 920 innerhalb der Thematik der Metallschmelzereinigung 2.1.2 Inklusionen in Metallschmelzen - Schmelzprozess, relevante Einschlusstypen und Problematik verunreinigter Gussprodukte 2.1.3 Möglichkeiten der Metallschmelzereinigung 2.1.4 Metallschmelzefiltration 2.2 Rasterkraftmikroskopie 2.2.1 Funktionsweise, Kraftspektroskopie und Imaging 2.2.2 Colloidal Probe Technik 2.3 Benetzung und deren Phänomene 2.3.1 Ansätze zur Quantifizierung von Benetzungsgrößen 2.3.2 Diskussion bezüglich der Oberflächenenergiemodelle 2.3.3 Realsystem: Benetzungsphänomene bei Metallschmelzen auf Keramiken am Beispiel Aluminium 2.4 Haftkräfte und deren Berechnung 2.4.1 DLVO-Kräfte: van der Waals-Wechselwirkungen 2.4.2 nonDLVO-Kräfte 2.4.3 Nanoblasen und Kapillarkräfte 2.4.4 Haftkräfte unter erhöhten Temperaturen, Sinterung 2.4.5 Haftkräfte auf rauen Oberflächen 2.4.6 Kontaktmechanik 2.5 Genutztes Modellsystem, Abgrenzung der Arbeit 3 Material und Methoden 3.1 Material 3.1.1 Substrate 3.1.2 Partikel 3.1.3 Modellschmelze Wasser, Flüssigkeiten für die Kontaktwinkelmessung 3.2 Methoden 3.2.1 Kontaktwinkelmessgerät G10 3.2.2 Rasterkraftmikroskope XE-100 und UHV750 3.2.3 MatLAB-Skripte 3.2.4 Silanisierung 3.3 Vorbetrachtungen 3.3.1 Berechnung der Hamaker-Konstanten der untersuchten Stoffsysteme 3.3.2 Bedeutung eines einheitlichen Protokolls bei AFM- und KWMessungen 4 Auswertung 4.1 Charakterisierung der untersuchten Oberflächen bezüglich ihrer Rauheit mithilfe von AFM-Scans 4.1.1 Kontaktmechanik und sinnvolle Wahl der Scan-Größen sowie Lateral-Auflösung 4.1.2 Höhenprofile (z-Werte) der Filtermaterialien 4.1.3 Rauheitskenngrößen der AFM-Scans 4.1.4 Zusammenfassung 4.2 Kontaktwinkelmessungen und Oberflächenenergieverteilungen 4.2.1 Kontaktwinkelmessungen auf den Filtermaterialien 4.2.2 Oberflächenenergie - Komponentenansätze 4.2.3 Oberflächenenergie - Equation of State 4.2.4 Abschätzen der Hamaker-Konstanten aus der Oberflächenenergie des Feststoffs 4.2.5 Zusammenfassung 4.3 Ergebnisse Kraftspektroskopie 4.3.1 Experimentelle Ergebnisse - Einflussfaktoren Benetzbarkeit, Rauheit und Gasübersättigung 4.3.2 Sondergeometrien 4.3.3 Nachbetrachtung zu den Ergebnissen des Modellsystems 4.3.4 HT-Messungen mit dem Rasterkraftmikroskop 4.3.5 Zusammenfassung 5 Modellierung 5.1 Berücksichtigung von Retardation bei gängigen van der Waals- Kraftmodellen auf rauen Oberflächen in der Mechanischen Verfahrenstechnik 5.2 Van der Waals-Kraft-Modelle für raue Oberflächen zur Beschreibung der experimentellen Daten 5.3 Dagastines Modell in Kombination mit dem Cooper-Ansatz 5.4 Kapillarkräfte durch Nanoblasen auf rauen Oberflächen 5.4.1 Zusammenfassung 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick 7 Anhang 7.1 Ergänzungen zum Kapitel Stand der Technik 7.2 Ergänzungen zum Kapitel Material und Methoden 7.3 Ergänzungen zum Kapitel Auswertung: Rauheit 7.4 Ergänzungen zum Kapitel Auswertung: Kontaktwinkelmessungen und Oberflächenenergien 7.5 Ergänzungen zum Kapitel Auswertung: Literatur- und Messdaten 7.6 Ergänzungen zum Kapitel Auswertung: Modellierung Literaturverzeichni

    Beitrag zur Berechnung von Haftkräften auf rauen Oberflächen am Beispiel keramischer Filtersysteme bei der Metallschmelzefiltration

    No full text
    Diese Arbeit setzt sich mit der Messung und Modellierung von Haftkräften auf rauen Oberflächen auseinander, wobei Filtermaterialien aus dem Sonderforschungsbereich 920 mittels Rasterkraftmikroskopie-Methoden untersucht wurden. Durch eine Vielzahl an Haftkraftmessungen konnte gezeigt werden, dass für schlecht benetzende Oberflächen die Rauheit zur Erhöhung der attraktiven Kräfte führt, da vermehrt mit Kapillarwechselwirkungen zu rechnen ist. Aus diesem Grund erfolgte eine Charakterisierung der Oberflächenmorphologien der Filtermaterialproben und eine kritische Bewertung von Modellen, welche aus Kontaktwinkeldaten die Oberflächenenergien ermitteln. Im Modellierungsteil der Arbeit wurden gängige van der Waals-Kraftmodelle mit Berücksichtigung von Retardationseffekten untersucht. Weiterhin wurden AFM-Scans mit dem Schichtmodell von Dagastine verbunden sowie für die Bewertung von Kapillarkraftmodellen verwendet.:Abbildungsverzeichnis Tabellenverzeichnis 1 Einleitung 2 Stand der Technik 2.1 Reinigung von Metallschmelzen 2.1.1 Stellung des Sonderforschungsbereichs 920 innerhalb der Thematik der Metallschmelzereinigung 2.1.2 Inklusionen in Metallschmelzen - Schmelzprozess, relevante Einschlusstypen und Problematik verunreinigter Gussprodukte 2.1.3 Möglichkeiten der Metallschmelzereinigung 2.1.4 Metallschmelzefiltration 2.2 Rasterkraftmikroskopie 2.2.1 Funktionsweise, Kraftspektroskopie und Imaging 2.2.2 Colloidal Probe Technik 2.3 Benetzung und deren Phänomene 2.3.1 Ansätze zur Quantifizierung von Benetzungsgrößen 2.3.2 Diskussion bezüglich der Oberflächenenergiemodelle 2.3.3 Realsystem: Benetzungsphänomene bei Metallschmelzen auf Keramiken am Beispiel Aluminium 2.4 Haftkräfte und deren Berechnung 2.4.1 DLVO-Kräfte: van der Waals-Wechselwirkungen 2.4.2 nonDLVO-Kräfte 2.4.3 Nanoblasen und Kapillarkräfte 2.4.4 Haftkräfte unter erhöhten Temperaturen, Sinterung 2.4.5 Haftkräfte auf rauen Oberflächen 2.4.6 Kontaktmechanik 2.5 Genutztes Modellsystem, Abgrenzung der Arbeit 3 Material und Methoden 3.1 Material 3.1.1 Substrate 3.1.2 Partikel 3.1.3 Modellschmelze Wasser, Flüssigkeiten für die Kontaktwinkelmessung 3.2 Methoden 3.2.1 Kontaktwinkelmessgerät G10 3.2.2 Rasterkraftmikroskope XE-100 und UHV750 3.2.3 MatLAB-Skripte 3.2.4 Silanisierung 3.3 Vorbetrachtungen 3.3.1 Berechnung der Hamaker-Konstanten der untersuchten Stoffsysteme 3.3.2 Bedeutung eines einheitlichen Protokolls bei AFM- und KWMessungen 4 Auswertung 4.1 Charakterisierung der untersuchten Oberflächen bezüglich ihrer Rauheit mithilfe von AFM-Scans 4.1.1 Kontaktmechanik und sinnvolle Wahl der Scan-Größen sowie Lateral-Auflösung 4.1.2 Höhenprofile (z-Werte) der Filtermaterialien 4.1.3 Rauheitskenngrößen der AFM-Scans 4.1.4 Zusammenfassung 4.2 Kontaktwinkelmessungen und Oberflächenenergieverteilungen 4.2.1 Kontaktwinkelmessungen auf den Filtermaterialien 4.2.2 Oberflächenenergie - Komponentenansätze 4.2.3 Oberflächenenergie - Equation of State 4.2.4 Abschätzen der Hamaker-Konstanten aus der Oberflächenenergie des Feststoffs 4.2.5 Zusammenfassung 4.3 Ergebnisse Kraftspektroskopie 4.3.1 Experimentelle Ergebnisse - Einflussfaktoren Benetzbarkeit, Rauheit und Gasübersättigung 4.3.2 Sondergeometrien 4.3.3 Nachbetrachtung zu den Ergebnissen des Modellsystems 4.3.4 HT-Messungen mit dem Rasterkraftmikroskop 4.3.5 Zusammenfassung 5 Modellierung 5.1 Berücksichtigung von Retardation bei gängigen van der Waals- Kraftmodellen auf rauen Oberflächen in der Mechanischen Verfahrenstechnik 5.2 Van der Waals-Kraft-Modelle für raue Oberflächen zur Beschreibung der experimentellen Daten 5.3 Dagastines Modell in Kombination mit dem Cooper-Ansatz 5.4 Kapillarkräfte durch Nanoblasen auf rauen Oberflächen 5.4.1 Zusammenfassung 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick 7 Anhang 7.1 Ergänzungen zum Kapitel Stand der Technik 7.2 Ergänzungen zum Kapitel Material und Methoden 7.3 Ergänzungen zum Kapitel Auswertung: Rauheit 7.4 Ergänzungen zum Kapitel Auswertung: Kontaktwinkelmessungen und Oberflächenenergien 7.5 Ergänzungen zum Kapitel Auswertung: Literatur- und Messdaten 7.6 Ergänzungen zum Kapitel Auswertung: Modellierung Literaturverzeichni

    A Contribution to the Multidimensional and Correlative Tomographic Characterization of Micron–Sized Particle Systems

    Get PDF
    The present work was carried out within the framework of the priority programme SPP 2045. Technical ultra–fine particle systems (< 10μm) from highly specific separation processes are to be investigated here with regard to multi–dimensional property distributions. Tomographic measurement methods allow a comprehensive 3D description of particle–discrete data sets of statistically relevant size. The focus of the work is on X–ray tomographic analysis by means of micro-computed tomography (micro–CT), which, if necessary, is extended to several size scales by including further measurement methods (nano–CT) and supplemented by suitable elemental analysis (FIB–SEM + EBSD, EDX). Two preparation methods (wax, epoxy resin) for different particle preparations are described methodically, which have already been published in a case study or are the subject of current studies in the outlook of the work. Finally, a networked multiple use of the generated data within an online particle database is shown and its application is explained using three concrete examples.:1 Outline 2 Description of Particle Properties 2.1 Integral or Class–Based Description 2.2 Particle–Discrete Description 2.2.1 2D Description 2.2.2 Full 3D Description 2.3 Multidimensional Characterization on Basis of Particle–Discrete 3D Data 2.3.1 Motivation 2.3.2 Kernel Density Approach 2.3.3 Copula Approach 3 X–ray Tomography 3.1 Historical Context 3.2 X–ray Physics 3.2.1 X–ray Generation 3.2.2 Polychromatic Spectrum 3.2.3 Interaction with Matter 3.3 Tomographic Imaging 3.3.1 Motivation 3.3.2 Basic Idea 3.3.3 X–ray Microscopy Measurement Setup andWorkflow 3.3.4 Tomographic Reconstruction via Filtered Back Projection 3.3.5 Region of Interest Tomography 3.4 Relevant Artefacts Related to Particle Measurement 3.4.1 Temperature Drift 3.4.2 Penumbral Blurring and Shadow 3.4.3 Cone Beam 3.4.4 Out–of–Field 3.4.5 Center Shift 3.4.6 Sample Drift 3.4.7 Beam Hardening 3.4.8 Rings 3.4.9 Noise 3.4.10 Partial Volume 3.4.11 Summary 4 Practical Implementation 4.1 Particle Sample Requirements 4.1.1 Geometry 4.1.2 Dispersity and Homogeneity 4.2 Statistics 4.2.1 Single Particle Properties 4.2.2 Properties of a Limited Number of Particles (10 to several 100) 4.2.3 Particle Populations with Distributed Properties 4.3 2D Validation 4.4 Measurement 4.4.1 X–ray Microscope 4.4.2 Source Filter 4.4.3 Detector Binning 4.4.4 Cone Beam Artefact Compensation 4.4.5 Center Shift Correction 4.4.6 Dynamic Ring Removal 5 Image Analysis 5.1 Image Quality 5.1.1 Grey Value Histogram 5.1.2 Resolution 5.1.3 Signal–to–Noise Ratio 5.1.4 Contrast and Dynamic Range 5.1.5 Sharpness 5.1.6 Summary 5.2 Basic Image Processing Strategies 5.2.1 Threshold–Based Segmentation 5.2.2 Machine Learning Assisted Segmentation 6 Correlative Tomography 6.1 Scouting Approach 6.2 Multiscale Approach 6.3 Multidisciplinary Approach 7 Data Management 7.1 Data Quality 7.2 Data Availability 7.2.1 Tomographic Datasets 7.2.2 Particle Database 8 Outlook on Further Research Activities 9 Publications 9.1 Copyright Declaration 9.2 Overview 9.3 List of Publications Paper A, Preparation techniques for micron–sized particulate samples in X–ray microtomography Paper B, Self–constructed automated syringe for preparation of micron–sized particulate samples in X–ray microtomography Paper C, Preparation strategy for statistically significant micrometer–sized particle systems suitable for correlative 3D imaging workflows on the example of X–ray microtomography Paper D, Multi–scale tomographic analysis for micron–sized particulate samples Paper E, PARROT: A pilot study on the open access provision of particle discrete tomographic datasets 10 Appendix 10.1 Application Example 1: Fracture Analysis 10.2 Application Example 2: 3D Contact Angle Measurement 10.3 Influence of the Source Filter 10.4 Influence of the X–rays on the Sample 10.5 Appropriate Filter Settings 10.6 Log File ParserDie vorliegende Arbeit ist im Rahmen des Schwerpunktprogramms SPP 2045 entstanden. Technische Feinstpartikelsysteme (< 10μm) aus hochspezifischen Trennprozessen sollen hier hinsichtlich mehrdimensionaler Eigenschaftsverteilungen untersucht werden. Tomographische Messverfahren erlauben dabei eine vollständige 3D Beschreibung partikeldiskreter Datensätze statistisch relevanter Größe. Der Schwerpunkt der Arbeit liegt auf der röntgentomographischen Analyse mittels Mikro–Computertomographie (mikro–CT), die im Bedarfsfall unter Einbeziehung weiterer Messmethoden (nano–CT) auf mehrere Größenskalen erweitert und durch geeignete Elementanalytik (FIB–SEM + EBSD, EDX) ergänzt wird. Methodisch werden zwei Präparationsverfahren (Wachs, Epoxidharz) für unterschiedliche Partikelpräparate beschrieben, welche in einer Fallstudie bereits veröffentlicht bzw. im Ausblick der Arbeit Gegenstand aktueller Studien ist. Schließlich wird eine vernetzte Mehrfachnutzung der erzeugten Daten innerhalb einer online-Partikeldatenbank gezeigt und deren Anwendung an drei konkreten Beispielen erläutert.:1 Outline 2 Description of Particle Properties 2.1 Integral or Class–Based Description 2.2 Particle–Discrete Description 2.2.1 2D Description 2.2.2 Full 3D Description 2.3 Multidimensional Characterization on Basis of Particle–Discrete 3D Data 2.3.1 Motivation 2.3.2 Kernel Density Approach 2.3.3 Copula Approach 3 X–ray Tomography 3.1 Historical Context 3.2 X–ray Physics 3.2.1 X–ray Generation 3.2.2 Polychromatic Spectrum 3.2.3 Interaction with Matter 3.3 Tomographic Imaging 3.3.1 Motivation 3.3.2 Basic Idea 3.3.3 X–ray Microscopy Measurement Setup andWorkflow 3.3.4 Tomographic Reconstruction via Filtered Back Projection 3.3.5 Region of Interest Tomography 3.4 Relevant Artefacts Related to Particle Measurement 3.4.1 Temperature Drift 3.4.2 Penumbral Blurring and Shadow 3.4.3 Cone Beam 3.4.4 Out–of–Field 3.4.5 Center Shift 3.4.6 Sample Drift 3.4.7 Beam Hardening 3.4.8 Rings 3.4.9 Noise 3.4.10 Partial Volume 3.4.11 Summary 4 Practical Implementation 4.1 Particle Sample Requirements 4.1.1 Geometry 4.1.2 Dispersity and Homogeneity 4.2 Statistics 4.2.1 Single Particle Properties 4.2.2 Properties of a Limited Number of Particles (10 to several 100) 4.2.3 Particle Populations with Distributed Properties 4.3 2D Validation 4.4 Measurement 4.4.1 X–ray Microscope 4.4.2 Source Filter 4.4.3 Detector Binning 4.4.4 Cone Beam Artefact Compensation 4.4.5 Center Shift Correction 4.4.6 Dynamic Ring Removal 5 Image Analysis 5.1 Image Quality 5.1.1 Grey Value Histogram 5.1.2 Resolution 5.1.3 Signal–to–Noise Ratio 5.1.4 Contrast and Dynamic Range 5.1.5 Sharpness 5.1.6 Summary 5.2 Basic Image Processing Strategies 5.2.1 Threshold–Based Segmentation 5.2.2 Machine Learning Assisted Segmentation 6 Correlative Tomography 6.1 Scouting Approach 6.2 Multiscale Approach 6.3 Multidisciplinary Approach 7 Data Management 7.1 Data Quality 7.2 Data Availability 7.2.1 Tomographic Datasets 7.2.2 Particle Database 8 Outlook on Further Research Activities 9 Publications 9.1 Copyright Declaration 9.2 Overview 9.3 List of Publications Paper A, Preparation techniques for micron–sized particulate samples in X–ray microtomography Paper B, Self–constructed automated syringe for preparation of micron–sized particulate samples in X–ray microtomography Paper C, Preparation strategy for statistically significant micrometer–sized particle systems suitable for correlative 3D imaging workflows on the example of X–ray microtomography Paper D, Multi–scale tomographic analysis for micron–sized particulate samples Paper E, PARROT: A pilot study on the open access provision of particle discrete tomographic datasets 10 Appendix 10.1 Application Example 1: Fracture Analysis 10.2 Application Example 2: 3D Contact Angle Measurement 10.3 Influence of the Source Filter 10.4 Influence of the X–rays on the Sample 10.5 Appropriate Filter Settings 10.6 Log File Parse

    Zur Rechtmäßigkeit der Zwangsvereinigung in Jagdgenossenschaften

    No full text

    Methoden der Nierenpunktion bei der Ratte

    No full text

    Die Zukunft des Jagdrechts in der Bundesrepublik Deutschland: Reformbedürftig oder bewährt?

    No full text

    Zur landesrechtlichen Aufhebung von Jagdzeiten

    No full text
    • …
    corecore