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Abstract

Die vorliegende Arbeit ist im Rahmen des Schwerpunktprogramms SPP 2045 entstanden.
Technische Feinstpartikelsysteme (< 10 µm) aus hochspezifischen Trennprozessen sollen
hier hinsichtlich mehrdimensionaler Eigenschaftsverteilungen untersucht werden. To-
mographische Messverfahren erlauben dabei eine vollständige 3D Beschreibung par-
tikeldiskreter Datensätze statistisch relevanter Größe. Der Schwerpunkt der Arbeit liegt
auf der röntgentomographischen Analyse mittels Mikro–Computertomographie (mikro–
CT), die im Bedarfsfall unter Einbeziehung weiterer Messmethoden (nano–CT) auf
mehrere Größenskalen erweitert und durch geeignete Elementanalytik (FIB–SEM +
EBSD, EDX) ergänzt wird. Methodisch werden zwei Präparationsverfahren (Wachs,
Epoxidharz) für unterschiedliche Partikelpräparate beschrieben, welche in einer Fall-
studie bereits veröffentlicht bzw. im Ausblick der Arbeit Gegenstand aktueller Stu-
dien ist. Schließlich wird eine vernetzte Mehrfachnutzung der erzeugten Daten inner-
halb einer online-Partikeldatenbank gezeigt und deren Anwendung an drei konkreten
Beispielen erläutert.

The present work was carried out within the framework of the priority programme SPP
2045. Technical ultra–fine particle systems (< 10 µm) from highly specific separation
processes are to be investigated here with regard to multi–dimensional property distri-
butions. Tomographic measurement methods allow a comprehensive 3D description of
particle–discrete data sets of statistically relevant size. The focus of the work is on X–ray
tomographic analysis by means of micro-computed tomography (micro–CT), which, if
necessary, is extended to several size scales by including further measurement meth-
ods (nano–CT) and supplemented by suitable elemental analysis (FIB–SEM + EBSD,
EDX). Two preparation methods (wax, epoxy resin) for different particle preparations
are described methodically, which have already been published in a case study or are
the subject of current studies in the outlook of the work. Finally, a networked multiple
use of the generated data within an online particle database is shown and its application
is explained using three concrete examples.



1 Outline

In the last three decades, X–ray tomography has become a standard tool in a lot
of research areas, like material science [18, 19], biology [20], hydrology [21], geo-
science [22], or industrial applications [23, 24]. In particle technology and mineral
processing, Lin et al. [25] and Miller et al. [26] prepared the first reviews on the topic,
which largely refer to their own pioneering work in this field. Coming from 2D sec-
tional imaging of minerals [27], they try to use the technique of non–destructive
X–ray tomography well–known from medical applications for their own research.
Although they were aware of the limitations of the time, especially due to comput-
ing technology, their work laid the foundation for a multitude of applications in
this field. Looking at Fig. 1.1 shows the potential of this technology and the enor-
mous progress that has been made in recent decades, especially by comparing two
reconstructed sections from different particle samples.

Projection Reconstruction Sectiona
6 mm

b c d Section

Figure 1.1: Difference between (a) an X–ray projection image from a 360°series, (b) the corresponding
reconstructed 3D dataset with (c) an exemplary section in the XY–plane. Note, that the
section can always be identified by its circular shape due to the reconstruction mechanism,
see Sec. 3.3, and (d) the tremendous progress when comparing image quality with first
measurements by Miller et al. [26]. The scale bar refers to (a) to (c), due to a missing scale
bar in [26], comparable length scale is indicated in yellow on two comparable particles.

Although Fig. 1.1-d, which depicts as section acquired by Miller et al. [26], shows
only single–phase particles, the image quality suggests that it was not at all possible
to obtain detailed information of particle phases as can be seen in Fig. 1.1-c, which is
acquired by a state–of–the–art lab–based system used in this thesis. Fig. 1.1-b shows
the related 3D tomogram, which is reconstructed from a series of projection images,
as can be seen in Fig. 1.1-a. The distinction of these kinds of image types will be
essential for understanding the 3D particle analysis covered in the present thesis.

This thesis is a collection of five publications, each of which is self–contained, but
all of which follow a common thread. Paper A [1] and Paper B [2] describe a detailed
validation of an automated sample preparation method that utilizes a wax matrix
with which it is possible to create dispersed particle systems without applying me-
chanical stress and which facilitates the segmentation process. Paper C [3] describes
an analogues method, which uses a combination of epoxy resin with low X–ray
absorbing nano spacer particles. Unlike the wax method, the resulting samples are
mechanically very stable and suitable for processing with high–energy radiation,
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photons in the case of laser milling and ions in the case of ion beam cutting. Contrary
to the wax method, where the validation was done with a single–thresholding image
processing workflow, the latter method was validated with the help of a machine
learning algorithm. Paper D [4] describes an exemplary tomographic workflow for
a multiscale characterization of micron–sized particle samples suitable for a mixture
of single–phase particles, in this case fibres and spheres, where the wax preparation
method from Paper A was used. Here, multidimensional correlation structures of
both systems were captured using parametric copulas, a set of correlation functions
described in detail in Sec. 2.3.1. An application example of the epoxy nano particle
method from Paper C, which is particularly suitable for the analysis of multi–phase
particles, is currently in the process of publication. First results are presented in
Sec. 6. Fig. 1.2 is a summary that places the papers in perhaps the most important
context of this topic—the increase in knowledge on particle properties as a function
of structural resolution.

see Chapter 8
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Paper D

Paper E

Particle-Discrete Data

Figure 1.2: Placing the papers in the overall context.

Many challenges in this regard are referred to this: for example the possibility of
correlating the information acquired by different three–dimensional measurement
techniques, and doing this over multiple length scales; The design of suitable sam-
ple preparation strategies and implementation of practical workflows; And, as an
ultimate goal, the connection of all this to gain multidimensional particle informa-
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tion, which can be used to describe and guarantee highly specific multidimensional
fractionation of technical fine particle systems to get very defined and highly pure
starting products for a wide range of modern materials.

An interconnected scientific framework facing these challenges is the Priority
Programme SPP 2045 of the German Research Foundation. All publications covered
by this thesis are part of the work within sub–project Z1 (313858373), which deals
with multidimensional and correlative characterization of particle systems. At this
point it is important to emphasise that without this collaborative work between
the research teams, especially in the area of statistical image data analysis, and the
methodological exchange within a large number of scientific meetings, the depth
of the topic could not have been mapped in this detail. Paper E [5] gives a possible
solution to provide the measurement results of the present work in a suitable form
and thus lay the foundation for an ongoing common use in the form of a database
comprised of the generated particle–discrete data.

Although each paper on its own has a motivation and a descriptive materials and
methods section, they are linked by the following introducing part of this thesis,
which also serves as enclosing bracket. In this regard, Sec. 2, Description of Particle
Properties, works as a basic introduction into multidimensional particle analysis. In
Sec. 3, X–ray Tomography, the main measurement principle used in all studies is
described on an intermediate level that will allow to understand the principle in
sufficient detail, but also the effects which can be seen in the results of the study.
The last subsection of this Sec. 3 leads over to, Sec. 4, Practical Implementation, which
is concerned with the sample, statistical considerations, validation methods, and
finally the measurement. Sec. 5, Image Analysis, gives an overview of image quality
measures, always discussed on examples from own measurements, followed by a
short comparison of two different image segmentation strategies. In Sec. 6, Correla-
tive Tomography, a short overview of the different goals of correlative measurement
is given based on some examples. As visualized in Fig. 1.2, data handling is one of
the major issues in data–driven analysis methods. A short overview of data quality
assessment and the organization of tomographic datasets on a local file system, and
of the particle–discrete datasets within a globally accessible online particle database
is given in Sec. 7, Data Management. Sec. 8, Outlook on Further Research Activities, takes
up Sec. 6 and gives an overview of the current state of research and a small outlook
in this field.

In all sections, it was attempted to support all practice–relevant statements with
examples from the literature and own observations in order to not only accept the
relevant parameters and settings, as the basis of the publications, as best practice,
but to specifically question them in order to generate additional added value in
parallel to the publications, which can be used for further measurement tasks.



2 Description of Particle Properties

The main goal of the analysis of a particle system is to find suitable parameters for
a reasonable description that can be used for quantification, and thus, for a compar-
ison regarding different properties. Depending on the measurement method, this
can be done either by aggregating the whole, or parts of the distribution, which is
introduced in Sec. 2.1, or by direct image–based analysis in two or three dimensions,
given in Sec. 2.2. It is less the question of whether a method is good or bad, but
rather if it fits to the chosen particle system. In the present study, idealised particles
were used in most cases, e.g. spheres or fibres, in order to be able to carry out a rea-
sonable method development. To do this systematically within the context of this
work, it was deliberately restricted to the parameter of particle size as one major ge-
ometrical property. However, all methods are designed in such a way that they can
be applied to other particle systems as well as, in the case of multidimensional anal-
ysis, to other parameter distributions. This section will give a general motivation for
the particle–discrete 3D analysis of particle systems. Simultaneously, the analysis of
several distributed parameters of the particle system, a so–called multidimensional
analysis, is discussed in detail in Sec. 2.3.

2.1 Integral or Class–Based Description

To aggregate information on particles in a reasonable manner, assumptions have to
be made, depending on the used measurement principle. For example, under the as-
sumption that all particles passing the beam path in laser diffraction are spherical, a
mathematical model1 can be applied to translate the diffraction pattern on the CCD 1 Fraunhofer diffraction

theory is applied for
spherical particles above
approx. 1 µm; below this
size, near the wavelength of
the used laser light, the Mie
scattering theory is applied.

into a particle size distribution. A back–calculation from the diffraction pattern to
particle–discrete information is not possible [28]. The particles are only considered
as a collective with collective properties.

Another approach is to divide the particle collective into discrete size fractions,
also referred to as classes. For example, sieving divides a collective into particles
that pass through and those that are too large and remain on the sieve. More classes
require additional sieves differing in mesh size. Spherical particles smaller than the
mesh size will pass the sieve with a certain probability. In case of non–spherical
particles, the characteristic length is decisive here. The probability of passing is now
not independent of the particle’s shape. This method will by no means represent
a fully comprehensive way of particle characterization. As will be shown in the
next sections, this is only possible having particle–discrete data. When dealing with
spherical particle systems, this description is a practical and reasonable approach
and an established method for particle–size characterization. Moving away from
these ideal systems, this may no longer be the case. In the following, an approach
is introduced that does not focus on the particle collective but on the individual
particle. Collective parameters can then be derived from a large number of these
particles.
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2.2 Particle–Discrete Description

Particle–discrete in this case means that particles are considered individually. Al-
though part of the particle collective, they each have their own property vector,
which can be evaluated individually and used as filter criteria, see Paper E.

2.2.1 2D Description

In static image analysis like optical microscopy or scanning electron microscopy
(SEM) particles are separated manually on a microscope slide2 or embedded in a 2 One possible way to cap-

ture 2D particle information;
Setup from a student practi-
cal training.
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well machinable matrix. In some cases, serial sectioning by micro–milling [29] or
focused ion beam (FIB) [30] are used to create quasi–3D datasets. Although it is
also possible with this method to pick up a sufficiently large statistical relevant
number of particles, there are large deviations when deducing a 3D volume from 2D
sections, especially for irregularly shaped particles [31, 32, 33]. The low–dimensional
view then results in an error between the measurement and reality, the so-called
stereological bias. Ueda et al. [34] quantify this stereological bias by comparing 2D
with 3D X–ray micro computed tomography (CT) data by imaging artificial minerals.
They determined a stereological correction method which compensates this by up
to 60 % for the used artificial binary particles.

Another approach to deal with the stereological bias starts one step earlier in
the preparation process. Because crushed materials with a wide particle size dis-
tribution segregate inside the matrix when using a standard embedding technique
vertically, the observed particle size will strongly depend on the height at which the
sample is cut. One possible way to compensate for this is given by Heinig et al. [35].
They cut the already prepared sample, rotate the individual parts by 90 degrees,
such that the direction of segregation is not aligned horizontally, and again embed
them.

Figure 2.1: Exemplary sections originating from a 3D data set of three different soda–lime glass par-
ticles differing in shape; from an ideal sphere over little satellites on the particle surface
towards a significant deviation from the spherical shape.

These methods were supplemented by dynamic approaches, which represent a
significant development, especially with regard to the statistical representativeness
of the samples [23]. Due to the particles passing by or falling past a static lens, a
large number of particles enter the measurement field of view (FOV). However, the
captured images are strongly dependent on the particles’ current orientation [36].
Image tracking algorithms are used to compensate for that, but only down to parti-
cle sizes of around 100 µm [37]. A complete 3D description of a collective of particles
smaller than 10 µm is not possible with these methods. Fig. 2.1 shows cross–sections
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from 3D particle data. As can be seen, the shapes are divers, but do not differ signif-
icantly from each other.

The cross–sections suggest that the particles are almost spherical and will not lead
to a significant error in determining particle–related characteristics. But although
the sample is homogeneous with a sufficiently large number of particles3, and a 3 Details regarding sam-

pling and sample prepara-
tion theory are discussed in
the methodological Paper A
and Paper C

large number of cross–sections has been analysed, the effect of stereological bias will
remain when dealing with particles that deviate strongly from the ideal spherical
shape. This is discussed on the example of a mixture of fibres and spheres via a
multiscale approach, see Sec. 6.2 and Paper D. The longest dimension, which is in this
case the fibre length, cannot be captured sufficiently well in cross–sectional images.
Without additional knowledge of the particle system’s principal shape, significant
errors can occur. Only a three–dimensional analysis method can capture individual
particles.

2.2.2 Full 3D Description

Taking the 2D sections from Fig. 2.1, a 3D tomographic measurement reveals four
particles which, in some cases, show significant differences from the spherical shape,
which are not apparent from the 2D sections, see Fig. 2.2.

A

A

A

B

B

B

C

C

C

D

D

D

Figure 2.2: 2D sections shown in Fig. 2.1 grouped according to the affiliation to their 3D representatives
A to D. Especially in case of particle C a significant deviation from the spherical shape can
be observed which is not visible in the three chosen sections.

Before coming to a more detailed description of the applications of micro–CT in
particle technology, see Sec. 4.2, the focus should now be on the nature of the 3D
description. A possible categorization can be made as follows:

1. intra–particle or structural description, meaning a distinction of all particle sub–
phases, for example natural mineral composition analysed by mineral libera-
tion analysis (MLA)4 [32, 39, 40] or artificial composites and layer structures re- 4 One example for an MLA–

analysis [38] result, which
is a combination of an SEM–
image, determining the ac-
tual particle image, and the
results from an energy dis-
persive X–ray spectroscopy,
determining the mineralogi-
cal composition of the parti-
cle’s phases, coded by a dis-
tinct colour.

500 µm

spectively [41], or microstructural particle features like pores or cracks [42, 43],
2. particle–discrete description, meaning a permanent particle characteristic, like

size and shape [44, 45], which is only changed when the particle is mechan-
ically, thermally, or chemically stressed, thereby deforming or breaking into
individual parts, forming new particles with new inherent features, and

3. inter–particle description, meaning the relationship of individual particles to
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each other [46] within a solid particle composite or a loose particle bed [8],
for example the porosity or coordination number within a filter cake struc-
ture [47].

In all presented studies, Paper A to E, the focus is on the particle–discrete descrip-
tion, as process–relevant parameters, like particle size and shape, cannot be treated
separately from each other [48]. The more the particle deviates from the ideal spher-
ical shape, which is assumed in many models, the more clearly various particle size
definitions differ. Although there are other shape descriptors than sphericity, which
include characteristics of such deviations, for example roundness, aspect ratio, or
compactness [49, 50, 28, 44]5, but not as a complete description. Complete means that 5 Note that this passage

is only for motivation pur-
poses and by no means a
fully comprehensive intro-
duction to this topic.

the calculated shape parameters can be traced back to the original particle geome-
try. Using calculated shape parameters, this can only be done approximately, since
the basis for the calculations here are particle dimensions, like axis lengths or par-
ticle volume. An exact knowledge of the particle’s three–dimensional structure is
essential to be able to evaluate the significance of the mentioned particle descriptors.

There are two methods to do this. The first is based on the voxel dataset gained
after the reconstruction of tomographic data. Here, the particle shape is described
by the volume that is enclosed by a surface boundary, called the boundary method,
or all voxels of the particle’s surface are contributing, which is called the assemblage
method [50]. Both strongly depend on the resolution of the measurement device [51]
and have the problem of the fractal nature of the particle surface [52, 53]. The sec-
ond method is the mathematical transformation of the voxel–based dataset into a
functional representative of a particle. For example, one approach that can be inter-
preted as the equivalent of a 2D Fourier–analysis on the surface of a sphere in 3D,
the so–called spherical harmonics [49, 54, 55]. Note again that this work focuses on the
voxel–based description of particle–discrete size descriptors based on tomography
data only.

2.3 Multidimensional Characterization on Basis of
Particle–Discrete 3D Data

In contrast to integral or class–based distribution parameters, discrete particle data
allow for the direct correlation of two or more distributed parameters, so–called
marginal distributions, hereafter referred to as multidimensional analysis6. 6 Note that the following

examples are reduced in di-
mensionality for a simpli-
fied presentation. The his-
tograms shown as sums of
pixels in rows and columns
of the 2D diagram is in re-
ality a projection from a 3D
space onto a 2D marginal
distribution.

2.3.1 Motivation

The following two examples serve to motivate the process of correlated multidimen-
sional characterization of particle systems in further detail:

1. Marginal distributions that show no discernible patterns like local maxima
or minima, as a special case of the uniform distribution, which, however,
show different patterns in the two–dimensional overlay like the ones given in
Fig. 2.3-a

2. Marginal distributions that show discernible patterns, suggesting a trivial con-
nection in the two–dimensional plane, but which in reality can be derived
from a wide variety of 2D patterns as can be seen in Fig. 2.3-b.
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a b

Figure 2.3: Connection between marginal 1D distributions and the original 2D counterpart. Both ex-
amples show two very different patterns in two dimensions giving the same 1D marginal
distribution, (a) resulting in a uniform, (b) in marginal distributions with three local max-
ima.

Regarding 1D marginal distribution, Anscombe [56] showed on four data sets
that although they have significantly different distributions, their basic statistical
properties, such as average, standard deviation, correlation, and linear regression,
are identical.7 Although Anscombe’s intention was to emphasize the importance of 7 Anscombes published ex-

ample from 1973 with the
goal of showing the influ-
ence of outliers on aggre-
gated measures [56].

graphical compared to statistical analysis, this example shows that the acquisition
and processing of raw data is essential in order to work with datasets in a reason-
able way. A conclusion from aggregated values to the true distribution without
considering the underlying data points is not possible. This sounds trivial, but can
be problematic in the case of integral and class–based methods. Rare “events”, for
example very sporadically occurring irregularly shaped particles as contaminations
within an ideally spherical particle sample or mineralogical valuable material par-
ticles in very low concentrations, have no/hardly any influence on an aggregated
value. However, a reliable estimate is the basis for many processes, even if for time
or economic reasons an arbitrary enlargement of the sample size is not possible.

Mathematical models can help to solve this problem, either by doing some kind
of interpolation on the basis of the data points, for example the kernel density esti-
mation (KDE) approach [57, 58], or based on the functional relationship between the
marginal distributions, for example the Copula approach. The latter is used in Pa-
per D and is discussed in detail in the corresponding materials & methods sections.
The aim in both cases is to generate a joint probability distribution.

In the following part, both approaches will be discussed only briefly, and not in
all mathematical detail, to show the basic idea of these approaches. To summarize,
methods are needed that give a complete description of the multidimensional pa-
rameter space. This can either be derived directly from the particle-discrete data
sets or concluded from the associated parameter marginal distributions.
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2.3.2 Kernel Density Approach

As stated by Schach et al. [59], the KDE is like an alternative for a histogram. The
main difference is that the classes of a histogram have fixed borders, meaning a data
point on the border of two classes falls within the left or the right one, determined
by the classification rule. In KDE, each data point is considered as the maximum
of a 2D density function, called the kernel8, whose decay behaviour is determined 8 Different kernels, the ex-

pression of the related band-
width, and the interaction
between different kernels in
1D and 2D.
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by a weighing parameter, the so–called kernel bandwidth, which has to be chosen
reasonably [60]. To put it simply, the bandwidth describes how much the probability
is scattered around the data point and thus to interact with its environment. If other
data points are located there, the coinciding single particle probability distributions
overlap, which ultimately results in a non–parametric joint probability distribution
for the whole dataset. A possible analogy can be given by considering equally
charged particles that superimpose their electric fields as they approach each other.

The KDE approach was used successfully to analyse data from mineral liberation
analysis (MLA) [59, 61]. Here, a probability density function f of two correlated
characteristics, CA and CB is defined as follows:

fCACB(x, y) =
n
∑
i=1

1
n
⋅ κx (

x − xi

bx
) ⋅ κy (

y − yi

by
) (2.1)

where, n is defined as the number of value pairs (x, y) of a dataset [(x1, y1), ..., (xn, yn)]

each assigned the same weighting 1
n . The term (x − xi) and (y − yi) states that each

value pair (x, y) is influenced more or less by the distance to value pairs (xi, yi),
which are part of the joint probability distribution, kxandky are the kernel functions
that determine the general shape of the curves used to generate the probability
density function and b is the kernel bandwidth.

The advantage of this method is that there is no need to search for a suitable
parametric family of distributions but it requires large sample sizes especially with
increasing dimensionality, often referred to as the curse of dimensionality9 [62, 63]. 9 The curse of dimensional-

ity was first introduced by
Bellman and Page [62]. It
states that the number of
samples needed to estimate
any function with a given ac-
curacy grows exponentially
with the number of input
variables (i.e. dimensional-
ity) of the function.

Buchmann et al. [38] show the bootstrap [64] method as one possible way to deal
with that by resampling a dataset of limited size. Resampling means to repeatedly
draw a dataset with lay back to get an empirical distribution function.

Another way is by using a parametric approach, where not the value pairs but the
corresponding parameter distributions—the marginal distributions—are coupled
by a mathematical function, called a Copula. This approach is used in all the related
multidimensional analyses performed in this study. A general introduction is given
in the following section. A more detailed description is given in Paper D. One
example from the previously mentioned publication [59] is given in Fig. 2.4-a.

2.3.3 Copula Approach

A parametric approach is not to start from the value pairs (xi, yi), i.e. the data points,
but from the associated distribution functions fCA(x) and fCA(y), the so–called
marginal distributions. A Copula is one possibility to do this. It is defined as a function
describing the relationship between the marginal distribution functions of different
random variables thereby forming a joint probability distribution [65, 66, 67]. This
approach was successfully implemented for MLA [68] and for the multidimensional
correlation described in detail in Paper D, using a multiscale approach, which is de-
scribed in more detail in Sec. 6. Another example is given by an application example
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for the particle database in the Supplementary Material of Paper E.
A very general mathematical description is as follows. Starting from a cumulative

distribution function FCACB with marginal distribution functions FCA and FCB , one
can show that there is a copula C such that

FCACB(x, y) = C (FCA(x), FCB(y)) (2.2)

Thus, the Copula is a function which is able to couple marginal distribution functions
to obtain their joint distribution10. The corresponding probability to Eq. 2.2 can be 10 Copulas were initially

used in financial credit risk
analysis, in order to be able
to make predictions about a
clustered collapse of several
debtors within a bond port-
folio [69]

determined by calculating the derivative:

fCACB(x, y) = fCA(x) fCB(y) ⋅ c (FCA(x), FCB(y)) (2.3)

where fCA and fCB are the probability densities of FCA and FCB , and c is the two-fold
derivative of C. This can be done in higher dimensions, meaning that the distribu-
tion of more parameters can be considered. Fig. 2.4 shows a graphical comparison
of both methods leading to the typical diagrams used in the referred papers.

ba

Figure 2.4: Comparison of the two approaches of multidimensional characterization with examples
from the previously mentioned publications: (a) KDE by Schach et al. [59] and (b) Copula
in Paper D. Note that the chosen colour scales are independent from each other showing
two very different parameters.

The advantage of the Copula approach is, among other things, that it is not linked
to mathematical conditions, such as the existence of a Gaussian distribution, but
can be used for any type of marginal distribution. This is of great advantage if the
method, which is presented here, is to be transferred to real (separation)processes.

Note that a non–destructive three–dimensional analysis of particulate samples by
lab–based X–ray tomographic systems has enabled such analyses for micrometer–
sized particle systems and thus lay the foundation for the following studies.
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This section starts with a short introduction into the beginning of X–ray tomography
in Sec. 3.1 to understand the relevance of the method. The subsequent Sec. 3.2
provides basics in X–ray physics followed by methodological details of tomographic
imaging in Sec. 3.3 with the related artefacts relevant for particle analysis described
in Sec. 3.4.

3.1 Historical Context

Tomographic imaging is an inverse problem. That means that one can extrapolate
from the effect, the two dimensional projection, to the cause, the radiated sample
volume. In 1917, Johann Radon lay the theoretical basis for the mathematical solution
of the problem [70], but with no practical application due to the missing possibility
to calculate real–life data. In the middle of the 20th century, the needed computing
power became available. After the Second World War, the former military radio
technician Godfrey Hounsfield started his study of radio technology in London and
subsequently started his career as technician at Electric and Musical Industries Ltd.
(EMI), where he developed radar–guided weapons. As team leader of one research
department, he was involved in designing the first English transistor–based com-
puter.

While inventing an application for automated pattern recognition, the idea for
a computer–based tomographic reconstruction was formed and got funding. For
the rest of the financing Hounsfield tried to convince the renowned neuroradiolo-
gist James Ambrose from the Department of Health and Social Society of the addi-
tional benefit of this new technique. They started experiments with gamma rays
on human brains [71]. The sensitivity was high enough to distinguish tumour from
surrounding tissue11. Ambrose and his team of radiological experts were deeply 11 Hounsfield realized “that

this technique may open up
a new chapter in X–ray diag-
nosis.” [71]

impressed by the capability of the new technology. By replacing the source with a
more powerful X–ray source they were able to reduce scan time from 9 days to 9
hours. Changes in the senior management team of EMI compromised further de-
velopment and Hounsfield had to fight to push the system to an industrial level.
In 1979 Hounsfield received the nobel prize together with Allan Cormack, who had
independently worked out the theoretical basis [72, 73].

At first, the CT–system was only established in medicine. CT–scanners were de-
veloped from needle– over fan– to cone–beam geometry. Also the detectors evolved
from 1D line– to 2D flat–panel. These two inventions gave the opportunity to ac-
quire all data in one scan without more than one rotation per scan. So, due to the
reduced effect of mechanical movement, a much more precise measurement was
possible. A detailed description of the evolutionary steps of the X–ray tomographic
setup can be found in [74].

Beside technological aspects, the basics in X–ray physics are essential to under-
stand signal formation on the detector and related artefacts. Both are strongly con-
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nected to the polychromatic nature of the X–ray spectrum and will be discussed in
the following section. Based on this, in Sec. 3.3 the fundamentals of tomographic
imaging are discussed by example of the most relevant reconstruction algorithm
currently used in the field of X–ray microscope (XRM).

3.2 X–ray Physics

When X–rays pass from the source to the detector assembly, they interact with the
matter in the sample volume non–destructively. The resulting radiation intensity I
is given by the Beer–Lambert law:

I = ∫
Emax

0
I0(E) ⋅ e− ∫

d
0 µ(E,x)dxdE (3.1)

with E the energy of the spectrum, integrated from zero to the highest energy Emax,
which is determined by the acceleration voltage of the electron tube; µ the linear
attenuation coefficient12 and x the running length going from zero to the sample 12 The linear attenuation

coefficient is a function
of atomic number and
atomic structure of the
sample material. Tabulated
values can be found in
several sources [75, 76].
An illustrative measure is
the penetration depth (PD)
of X–rays as an intrinsic
material parameter. X–ray
penetration depth (PD) for
examples used in this study:
Epoxy [1], Al [6], Hg [10], all
for a polychromatic X–ray
source at 100 keV

Epoxy Al Hg

Atomic number 6 13 80
Density in g cm−3 2.3 2.7 13.6
PD in mm 2.9 2.2 0.1

thickness d. The summed spectrum, which is in our case polychromatic, is changing
significantly while passing the sample. The X–rays are attenuated and the initial
radiation intensity I0 is reduced to a measured intensity I on the detector. The fol-
lowing part should give an insight in the mechanisms of X–ray generation and their
interaction with matter from an engineering point of view. A more detailed descrip-
tion of the physics is given by Pavlinsky [77], a deeper insight in the application is
given by Buzug [74] and Russo [78].

3.2.1 X–ray Generation

Electromagnetic radiation between 100 eV and a few 100 keV is called X–rays. In
nature, they occur wherever high–energy events take place. On our planet, for ex-
ample, X–rays are generated in radioactive decay and in conjunction with lightning.
The nearest major X–ray source in our solar system is the sun, in whose corona
extremely hot gas emits high-energy radiation. Black holes are considered to be the
strongest sources of X–rays.

In technical applications of X–ray sources, electrons are accelerated in electro-
magnetic fields, either in a circular or linear manner. When using circular accel-
erators, like used in synchrotron light sources, electrons at relativistic speed emit
high–energetic electromagnetic radiation tangential to the direction of acceleration,
called synchrotron radiation. This radiation comprises of electromagnetic waves
from X–ray to Gamma range and can be decoupled from the accelerator in so–called
beamlines. Here, high–precision filtering is carried out in the given energy range
in order to subsequently guide almost monochromatic radiation of the desired fre-
quency to the experiment. Due to the extremely narrow energy distribution of the
radiation and its high intensity, experiments can be performed with very high accu-
racy and in a very short time—depending on sample geometry and material up to
a factor of a thousand.

Furthermore, X–rays can occur as a product of the interaction of accelerated elec-
trons with bulk material. In the case of an X–ray tube (see Fig. 3.1-a), electrons
emerging from a hot cathode are accelerated in an electric field towards the anode,
also called target13 where they interact with target material with high atomic num- 13 In this study the X–

ray source is equipped with
a transmission target. Com-
pared to a reflection target it
is possible to generate min-
imum focal electron spot
size but with less radiation
power.
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ber, for example tungsten. Fig. 3.1-b shows the enlarged interaction volume with
X–rays and the target’s bulk material, the so–called excitation bulb. As the penetra-
tion depth increases, various energy–dependent interactions occur. Depending on
the material composition, very sharp peaks at exactly defined energies occur, which
are called characteristic X–rays. All other mechanisms form a broad background that
is called bremsstrahlung, see Fig. 3.1-b and Fig. 3.1-c. The integral over all resulting X–
ray photon energies results in a sufficiently high intensity which enables to measure
even at low acceleration voltages and reasonable exposure times on lab–scale.

X-ray
beam

Acceleration voltage

Electron beam

Cathode
(Tungsten)

Anode

Focussing stage Aperture Transmission target
(Tungsten)

Window
(Beryl)

Centering stage

a

b c

bDetail →

Figure 3.1: Details on the generation of polychromatic X–rays: (a) shows the construction of a polychro-
matic X–ray source with transmission target. The referred interaction volume is enlarged
in (b) and given in relation to the penetration depth of X–rays in the bulk material. The
illustrated excitation bulb has different parts, which are contributing more or less strongly
to the resulting total spectrum, shown in (c) of the generated X–ray cone beam.

It should be stated that size, geometry and stability of the electron beam is es-
sential for an accurate measurement signal over a scanning period. For example,
the focal spot size on the target determines the resolution limit of the entire system.
This focus size in turn depends on a repulsive space–charge zone generated within
the interaction volume [79]. Another example is the stability of the focus spot (in
position and size) on the target surface that significantly influences the geometry of
the cone–beam and so location and size of the projection image on the scintillator
and afterwards on the CCD. Modern systems are able to compensate for this before
tomographic reconstruction.

3.2.2 Polychromatic Spectrum

Both continuous spectrum and characteristic spectral lines are used integrally in
lab–based X–ray CT systems. Fig. 3.2 shows the possibilities of altering the overall
spectrum by changing the acceleration voltage of the electrons in the electron tube.
Here, the maximum photon energy and the integral intensity can be varied. Another
option is to change the tube current14 that only shifts the integral intensity. The 14 The tube current repre-

sents the photonic flux de-
termining the number of
photons of a certain energy
range leaving the cathode.

maximum photon energy is only related to the maximum possible kinetic energy
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of the electrons and is therefore fixed. Additionally, it is possible to apply a filter15 15 Note that the dramatic
decrease in the number of
low energy photons, see
Fig. 3.2-c, is the result of
the absorption by the atmo-
sphere (no vacuum) in lab–
based systems.

to the initial beam before it passes the sample. In most cases this is done with thin
metal foils (alumina, copper). Further, air acts as a filter naturally.

For optimal measurement conditions it is necessary to generate a balanced spec-
trum adapted to the measurement situation. On the one hand, the process of filtering
low–energy X–ray photons is essential to minimize beam hardening (BH) artefacts
(details see Sec. 3.4). On the other hand, photons of too high–energy would pene-
trate the sample with less or no interaction with the sample’s material. In this case
the contrast of the projection image decreases. An image with good contrast in an
acceptable scanning time is always a balance between acceleration voltage, power
and adequate filtering.

N
u

m
b

er
 o

f 
p

h
o

to
n

s

Photon energy in keV

Tube voltage Tube current Filteringa b c

Figure 3.2: Possibilities of influencing the polychromatic X–ray spectrum. By (a) altering the tube
voltage (electron acceleration voltage) to shift the maximum photon energy, (b) the tube
current to increase the number of photons, and (c) filtering to decrease the number of
low–energy photons that are causing artefacts in the final reconstruction volume.

The most important fact about polychromatic X–ray radiation is that every single
interaction of an X–ray photon with matter changes its energy and so, the overall
spectrum. So, even if the initial spectrum is known, it is not possible to directly use
the detector signal as a quantitative measure [80]. Quantitative data based on X–ray
microscope (XRM)–measurements can only be obtained by using energy–dispersive
devices [81], by creating reference samples, which are often referred to as phan-
toms16 [82], or by correlating another measurement signal on the same or parts of 16 In this case the phan-

tom must be comparable
to the samples. This in
atomic number, density and
geometry. Coming initially
from medical applications,
the theory on phantom con-
struction is very limited in
the field of particle technol-
ogy. In the case of particu-
late samples, there are signif-
icantly more degrees of free-
dom (by number and size
of the particles), which are
most likely to be difficult
to adapt reasonable for dif-
ferent samples. Because de-
signing one phantom for ev-
ery single measurement sit-
uation is not an efficient
approach, a correlative ap-
proach is favourable here
(see Sec. 6).

the same measurement volume [9] (see also Sec. 6).

3.2.3 Interaction with Matter

In general, the X–ray absorption contrast is determined by the sample, its atomic
number, material density and geometry, and the energy (or rather the wavelength:
E = h ⋅ ν) of the polychromatic spectrum, see Tab. 3.1. Fig. 3.3 shows possible in-
teraction mechanisms of the polychromatic X–ray spectrum with the sample. First,
X–ray photons drive out electrons close to the nucleus, which is called photoelectric
effect Fig. 3.3-a. In the borderline case, where one electron produces exactly one
photon, there is maximum photon energy or minimum photon wavelength. The
energetically determined state is filled up by an electron of a higher energy level.
The energy difference between both states is emitted as a photon. In the spectrum
of an X–ray source, the resulting sum signal appears as a peak, or a series of peaks,
which is called characteristic X–ray radiation. This element–specific information can
be used in radiographic measurement procedures, e.g. X–ray diffraction (XRD), as a
means of element identification by comparing the determined spectra with known
spectra that are stored in databases.
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Furthermore, X–ray photons can interact with quasi–free electrons17 leading to 17 When deriving the
Compton effect theory, a
free electron is assumed. If
the electron is bound in an
atom, the binding energy
must be subtracted from
the kinetic energy of the
electron after the collision.
The combination of the
bound and free state of the
electron is called quasi–free.

the emission of another X–ray quanta of less energy. This so–called Compton effect,
shown in Fig. 3.3-b, can occur in several stages. Since the quasi–free electrons are
not firmly bound in energetically defined nuclear shells, the energy of the generated
X–ray photons is not in defined steps, but continuous. Finally, at energies higher
than 1.022 MeV, X–ray quanta can produce matter in the form of electron–positron
pairs, which then immediately dissipate, i.e. they cancel each other out as a matter–
antimatter pair, emitting high–energy radiation as gamma quanta, an effect that is
called pair formation Fig. 3.3-c. This effect is not relevant in the considered energy
range, which in our case is 30 keV to 160 keV. Fig. 3.3-d shows the superposition of
all three effects in the energy-dependent overall absorption curve.

Table 3.1: Dependencies of the attenuated X–ray intensity given by the Beer–Lambert law for atomic
number, X–ray wavelength, sample thickness, and material density. (∗)Note that in case of a
polychromatic beam this interaction is even more crucial, because every shift in wavelength
of a single photon has an influence on the whole energy spectrum.

Parameter Dependency Comment

Atomic number µ ∼ Z4 When normalized to ρ →
µ
ρ ∼ Z3

Wavelength µ ∼ λ3 Polychromatic spectrum (∗)
Sample thickness µ ∼ d Best case: rotational symmetric
Density µ ∼ ρ Difference between background (matrix) and structure

(particle, breakage) essential
Too low: Not enough contrast for analysis
Too high: Artefacts due to high attenuating phases

ℎ ∙ 𝜐 1
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2
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Figure 3.3: X–ray absorption mechanisms of photons in matter adapted from [74]: (a) shows the photo-
electric effect, (b) the Compton effect and (c) the pair formation. Note that the initial quantum
energy h ⋅ ν is indicated by the wavelength of the incoming photon (short→ high, long→
low–energy). (d) shows the superposition of all effects to the overall absorption curve.

3.3 Tomographic Imaging

Tomography is a generic term for all imaging measurement methods that determine
the internal structure of an object and visualize it as sectional images. The prefix
“tomo” originates from the Greek word “tome”, meaning section or cut. Sectioning
can be destructive in case of a microtome18 or a focused ion beam (FIB). Here, the 18 A microtome is a tool to

cut very thin sections from
an object to analyse internal
structures with visible spec-
trum (VIS) or electron mi-
croscopy

cut sections can also be combined virtually afterwards to generate 3D volumes but
mostly with non–uniform (non–isotropic19) voxels, especially with measurements

19 If cutting depth cannot
reach the same size as the
high spatial resolution in the
related cut section, such vox-
els are called non–isotropic.

of high lateral pixel resolution.
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A non–destructive technique is radiography. The following sections focus on X–
ray microscope (XRM) only. FIB in combination with SEM (FIB–SEM) is discussed in
Sec. 6 as one possible correlative method. It should also be stated that all investi-
gations are performed in absorption contrast mode. The phase contrast mode [83]
can be used if the difference in the linear attenuation coefficient between different
phases is not sufficient for a significant contrast in absorption. This is often used
when analysing organic material or phase boundaries, which in particular play a
decisive role in mineralogical analyses. Details on other tomographic measurement
methods are discussed by Buzug [74], but are not of concern here.

3.3.1 Motivation

As every preparation method alters the sample regarding the structural integrity,
e.g. mechanical cutting/polishing of sub–volumes generating breakage of structures
like pore networks, the functionality, e.g. in living structures, and sometimes the
chemistry, e.g. oxidation of cut sample areas exposed to atmosphere, it has always
been the goal to find a method of investigation which is non–invasive. This means
that physical contact with the sample is not necessary, and in the best case non–
intrusive, meaning that there is no influence on the process, in the case of in–situ
experiments. As mentioned in Sec. 3.1, rapid advancements in computer technology
enables scientists to apply known 2D non–destructive techniques to three dimen-
sions. So, being able to solve the inverse problem of tomographic reconstruction in
a reasonable time, XRM now has become the method of choice for numerous applica-
tions in engineering technologies like material science [19, 18]. Examples found in
chemical engineering are given in Paper A. An overview of current ex– and in–situ
studies in this field is given by Leißner et al. [8].

3.3.2 Basic Idea

In ordinary radiological 2D imaging, all attenuation coefficients along one line
through the sample volume form a cumulated signal. This equals one specific grey
value in the projection image. Thereby structures overlap, which are located in suc-
cession in the beam path and cannot be resolved individually. By scanning a specific
field of view (FOV) of the sample under different angles the overlapping structures
along the moving beam path change and a 3D reconstruction is possible. Extracted
sections from this volume are no longer a sum signal but sections with grey values
corresponding to the attenuation coefficients of the material.

Fig. 3.4-a shows a 2D X–ray projection image of a set of human teeth20. The 20 Note that the projec-
tion image is acquired with
a scanner–detector setup ro-
tating around the teeth, so
that all structures appear
in one plane. Parts of the
spinal column can thus be
seen on the sides of the im-
age too.

problem is that there is no possibility to separate distinct features like teeth and
bones. Another example is an XRM projection image of a bumble bee given in Fig. 3.4-
b and Fig. 3.4-c. Overall shape and body parts are visible but not distinct features like
the attachment points of the flight musculature. Such details can only be captured
in 3D.

3.3.3 X–ray Microscopy Measurement Setup and Workflow

A CT system with a second optical magnification step is called X–ray microscope
(XRM). Depending on the community, the terms micro–CT and XRM are used in-
terchangeably. Since this work focuses on the ability of the system to resolve very
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Figure 3.4: Comparison of two projection images from (a) a set of human teeth [84] and (b) of a humble
bee. The latter allows the extraction of sectional images without overlapping in any desired
direction (e.g. front, side, top). Note that (a) was captured with a moving source–detector
system, which causes also the spinal column to appear on the sides of the image. Contrary
to the sections from the 3D tomogram, the projection image always shows an overlapping
of structures.

small structures, XRM will be used in the following to clearly distinguish the method
from established micro–CT methods without additional magnification step. Fig. 3.5
shows a typical XRM–setup with the corresponding workflow. A polychromatic X–ray
source (for details see Sec. 3.2) emits a conical–shaped beam which can be filtered
after passing the aperture.

The high–energy X–ray radiation penetrates the sample that is mounted on a
rotating stage and is geometrically magnified on a scintillator screen. Here, X–ray
photons interact with the scintillator material21 to create VIS–photons. The resulting 21 In case of the Zeiss

Xradia 510 Versa there is
tallium–doped caesium io-
dide deposited on needles
which act as light guides
to avoid unwanted scatter.
A review of basic scintilla-
tor technologies is given by
Nikl [85]. Note that the scin-
tillator quality has a deci-
sive influence on the sys-
tem’s performance [86].

image on the scintillator is now captured and magnified by optical lenses with
different possible magnifications (in case of the Zeiss Xradia 510 Versa, 0.4x, 4x, 20x,
40x) to a CCD flat panel detector resulting in a 2D projection image.

With state–of–the–art detectors with 20482 pixels and binning 2 (for details see
Sec. 4.4.3) this results in approx. 1600 projection images22 per scan. The minimum

22 Note that there is always
one projection image added
when measuring over 360°.
So, there is no real overlap
of the first and second half
of the entire rotation, real
information is added and
noise is reduced.

number of projections is given by Crowther et al. [87], known as the Crowther crite-
rion, stating that in case of the filtered back projection (FBP)–algorithm:

nmin = π/2 ⋅ nDetectorPixels (3.2)

Additional care must be taken when the FOV is smaller than the sample diameter,
e.g. in case of high–resolution scans in Paper D. Kyrieleis et al. [88] emphasizes
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Figure 3.5: X–ray microscopic setup with two–step magnification for a typical tomographic workflow
used in this study. The cone–beam left the X–ray source passing the aperture and an
optional filter. After radiating the sample, the attenuated signal is projected on a scintillator
screen and converted here into visual light that can be optically magnified and projected on
a CCD camera. A series of projection images can now be reconstructed to a 3D volume, in
most cases represented by a stack of TIFF images. This is the starting point for further image
processing procedures to create a suitable 3D model, which can be used for a quantitative
analysis.

that in this case nDetectorPixel = nSamplePixel, which means that an imaginary number
of pixels is to be determined, which would correspond to a detector covering the
total sample width. If the sample is much smaller than the FOV, e.g. in case of an
overview scan to determine the homogeneity of a particle sample as done with
sample cylinders from Papers A to E where

heightSample

diameterSample
≈ 3

1 , the sample diameter

is in the size range of 1
3 of the FOV. So, in this case the effective number of covered

pixels on the CCD detector is also 1
3 that reduces the minimum number of projection

images by 1
3 too, meaning that in such a case a significant reduction of the number

of projection images causes no loss of quality of the final reconstruction.
After capturing, the series of projection images is now transferred to a 3D vol-

ume by applying a mathematical algorithm, which is either Fourier–based, like the
FBP algorithm just mentioned, algebraic, or statistical [74]23. This process is called 23 Note that with the last

two it is possible to reduce
the number of projections
significantly.

tomographic reconstruction. Depending on the sample, different reconstruction algo-
rithms are suitable for the measurement situation. The following part focuses on
the FBP–algorithm only.

3.3.4 Tomographic Reconstruction via Filtered Back Projection

Fig. 3.6 shows a simplified process chain of the FBP–algorithm, starting from an
exemplary 2D structure in a 2D object space with coordinates x and y, see Fig. 3.6-a.

Note that in a real measurement, the illustrated process is in three dimensions, so,
also the representation of a structure in the object space would be 3D, the projection
image 2D and so on, all steps being one dimension higher. Displayed are two white
rectangles on a black background. The overall goal is to have the same structure
before and after the transformation process from Fig. 3.6-a to Fig. 3.6-d (-j). When



3 X–ray Tomography 19

projecting these 2D rectangles on a 1D screen, illustrated by a line, the shadows, with
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coloured parts referring to the objects, differ depending on the projection angle—
in some cases they even overlap. The horizontal alignment of the 1D projection
of the object space representation, which can be seen in Fig. 3.6-b, indicated by
numbers 1 to 5 and related colours, over the associated projection angle is called
Radon transform, named after the Austrian mathematician Johann Radon (1887-1956).
The visualization of this is called a sinogram, because of its wave–like structure,
see Fig. 3.6-c. The sinogram is used sometimes for applying reconstruction filters,
like the reduction of noise–induced streak artefacts by sinogram smoothing [89]. If
the projection images from the sinogram are now smeared over the object space
according to their related projection angles, both rectangles can now be reconstructed
within the object space. This transformation is called back projection. But as can be
seen in Fig. 3.6-d, the rectangles appear blurred, sharp edges have disappeared.

After performing a fast Fourier transformation (FFT), see Fig. 3.6-e, which gives a
representation of the rectangles in the frequency domain, called the Fourier space24,

24 To illustrate the con-
nection between the object
space and the related
Fourier space represen-
tation, a figure with legs,
arms, and a head is shown
above. Note that in the
case of lines the angles are
preserved but the location
is lost, i.e. shifted into
the origin of the Fourier
space radial coordinate
system. This visualisation
was generated with a live
Fourier transformation tool
by Pauw [90].

the reason can clearly be seen. A radial over–representation of low frequencies. Since
low frequencies also mean long wavelengths, edge structures cannot be imaged
clearly and sharply—the object gets blurred. This becomes even more clear when
looking at one single projection in all three image domains, which are connected via
the Fourier slice theorem (FST)25, see Fig. 3.6-g.

25 The Fourier slice theo-
rem (FST) states that the 1D
Fourier transformation of
the detector signal, which
represents the current
projection image, exactly
equals a line through
the 2D Fourier space
representation of the object.
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Figure 3.6: Illustration of the FBP algorithm beginning with (a) a 2D structure in the object space,
and (b) its corresponding representation in the Radon space, (c) visualized in a so–called
sinogram. After back projection, (d) the structure in the object space is reconstructed, but
with blurried edges. After (e) performing a FFT, the (f) Fourier space representation of the
structure shows the reason, a radial over–representation of low frequencies. This becomes
even more clear when (g) looking at one single projection in all three image domains, which
are connected via the FST. The (h) overemphasis of low frequencies can be (i) compensated
by applying a high–pass filter. When back–projecting these filtered projections, (j) the
structure is reconstructed correctly. An inverted filtering would lead to (k) a loss of image
information.
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The yellow lines in Fig. 3.6-h, converging in the middle of the Fourier space are
showing this effect too. The overemphasis of low frequencies can be compensated by
high–pass filtering, which works in the 2D Fourier space by turning low frequency
parts, represented by a certain grey value, to black. As the coordinate system of the
Fourier space is radial, this is done with a circle, as can be seen in Fig. 3.6-i. When
back–projecting these filtered projections, the rectangles are reconstructed correctly,
as can be seen in Fig. 3.6-j—this process is called filtered back projection.

The filtered back projection (FBP) algorithm which was used in all referred publi-
cations of this study is to–date the most widely used but certainly not necessarily
the most ideal reconstruction approach. The rise of affordable GPU–based systems
is increasingly leading to the use of significantly more computationally intensive re-
construction algorithms—most notably iterative algorithms. However, the reasons
why FBP still plays such a big role for a long time are discussed in detail by Pan
et al. [91]26. 26 Mainly because standard

software of the laboratory
instruments did not offer
an interface for self–written
code for a long time. This
has changed in the last years
and newer algorithms were
implemented, one example
is given by Pelt et al. [92]

Fig. 3.6-k shows a loss of image information, by applying an inverted filter. In
the given example, only the edges are remaining. In the real FBP reconstruction
algorithm, filtering is not only done with a high–pass, but also with an additional
low–pass, to suppress noise. This combination is known from signal theory and is
called a band–pass. Note that the implementation of the algorithm can be realized
in different ways, utilizing combinations of the here presented methodology. As
the object space and the Fourier space are two representations of the same thing,
filtering can be applied differently. Note also that the example given in Fig. 3.6
is with parallel beam geometry for illustrative purposes. Due to the cone beam
geometry of the XRM, which is used in this study, the FBP algorithm must of course
be adapted. Details are given by Buzug [93].

Although there is already a wide range of other algorithms, some of which offer
significant advantages over FBP (fewer projections, better minimization of artefacts),
the FBP algorithm is something like a standard, commonly used in lab–based to-
mographic systems. This is most likely due to the rapid development of lab–based
systems. Software developments were often deprioritized and proven solutions
were used [91]. Only when development speed of hardware slowed down, other re-
construction methods [74] became more and more important [94, 95]. Nonetheless,
for a future implementation as a standard measurement tool, e.g. in a production
environment, the sample throughput will be a major limiting factor, what must be
achieved mainly by further optimization of the scanning parameters.

3.3.5 Region of Interest Tomography

region of interest (ROI) tomography is also called truncated tomography. As described
in Appendix D of Paper D, the truncation happens when the sample is larger than
the actual FOV. In every magnification step—from the whole sample to the region
of interest—the penetrated length stays the same. But the angular range to cover
sample features declines with increasing voxel resolution. So, more and more fea-
tures intersect the X–ray beam path only at a limited number of projection angles.
The smaller the ROI, the smaller this angular range will be. This causes problems in
normal filtered back projection reconstruction and can lead to artefacts in the recon-
structed ROI. Katsumata et al. [96] describes the effect with different combinations
of FOV and the arrangement of defined structures in the sample volume. It could be
shown that the more objects outside the FOV, the more artefacts appear in the ROI.
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Fig. 3.7-a shows an example of two samples embedded in epoxy glued on a
needle pin, the standard sample preparation procedure for single particle analysis
used in this thesis. One particular case presented here shows a particle consisting
of low–attenuating touching another of high–attenuating phase (top).

Rotation angle 0° 90° -90° -180°

ba

?

c

d ? ? ?

Figure 3.7: Comparison of structures in projection images under varying rotation angles: (a) showing
an angle where a high attenuating particle (dark) is touching a lower attenuating one
(light). The reason can be seen when (b) changing the rotation angle step by step. (c) in
the top case, particles are actually touching, (d) in the bottom one, the highly absorbing
particle is only briefly in the FOV. Only the projection in one single direction suggests, that
both particles are close to each other. The truth can only be judged in 3D. Note that the axis
of rotation is marked in red.

Also the second case (bottom) suggests the same. Thus, if only these two 2D
projection images were available, one could not clearly predict which case actually
exists and what could be a potential risk of out–of–field artefacts (see Sec. 3.4.4). A
variation of the rotation angle, see Fig. 3.7-b, shows that only in the first case the
two particles are really touching each other Fig. 3.7-c. The highly absorbing phase
in the second case (bottom) is clearly outside the FOV and only apparently touches
the particle, see Fig. 3.7-d. So, looking only at projection images can be misleading.
Complete information is only available with the three dimensional tomogram.

Another approach is discussed by Xiao et al. [97]. They describe an error esti-
mation for ROI tomography, here called zoom–in tomography. Starting with a high–
resolution scan, the ROI is combined with a low–resolution scan of the whole sample.
Here, the resulting error is determined to be lower than in classical truncated to-
mography. This method is not to be mistaken with neither scouting nor zooming. In
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contrast, here, the low–resolution scan of the total volume is used directly to improve
the quality of the high–resolution ROI scan and to minimize artefacts. Alternatively,
Parlanti et al. [98] propose a method with the rotation axis outside the FOV which is
called extended FOV acquisition. Both methods will not be of further concern here.

When measuring larger sample sizes, a ROI, which is positioned far away of the
sample’s rotation axis, leads to a tumbling of the sample27. That means, scanner 27 A potential source of

collision of sample and de-
tector is shown for a con-
stant ROI and different FOV.
Starting with the less criti-
cal case with an (a) adapted
sample size fitting to the
FOV, followed by (b) the
same FOV in the center of a
larger sample. The most crit-
ical case is when (c) the FOV
is placed eccentrically in the
same sample volume.

and detector have to be placed sufficiently far away to prevent a collision with the
sample.
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3.4 Relevant Artefacts Related to Particle Measurement

As already discussed in Sec. 3.3.4, all reconstructions were done with the FBP algo-
rithm. Since the image details but also errors of the projection images are smeared
over the entire object space in the back projection process, this algorithm is prone
to a large number of artefacts. In the following section, only the dominant effects
are briefly described, which are related to particle measurement and are relevant for
the particle embedding procedures presented in Paper A and Paper C. To provide
a reasonable reference to the measuring system, the artefacts are ordered along an
imaginary photon path from the X–ray source to the detector.

Referring to images, artefacts are defined as visible, unwanted displays that do
not correspond to the original data, in our case the 3D object to be depicted. Arte-
facts can be related to the physical measurement principle, the measurement setup,
the imaging method, and, in case of tomography, the subsequent reconstruction. Be-
cause they are not always clearly distinguishable, a basic understanding is essential
for quantification of possible errors in image processing, especially in the case of
high resolution measurements.

3.4.1 Temperature Drift

A large part of the kinetic energy of the electrons arriving at the target is converted
into thermal energy, see Fig. 3.8-a. The interaction volume fluctuates laterally and
in direction of the electron beam, see Fig. 3.8-b and also Fig. 3.1. Consequently, as
the spot (source of the cone beam) is changing in size and position, the projection
conditions change, which can be seen in Fig. 3.8-c.

depth
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Figure 3.8: The (a) focused electron beam on the target is building up an interaction zone in the target
volume, called excitation bulb (see also Fig. 3.1) that can (b) vary thermally induced lateral
and in depth and can so (c) lead to a drift of the cone beam. Note that this divergence
increases with increasing distance to the detector.

Additionally, secondary radiation induced by interaction of electrons with the
tube housing can create extra–focal or off–focal drifts [99]. Particularly in high–
resolution scans (voxel size < 1 µm and very short source–sample distances), this
can lead to significant differences between individual projection images and thus
to blurring in the resulting tomogram [100]28. Even if the overall system is kept 28 Note that there is an

additional blurring in the
static projection image
solely caused by the non–
negligible size of the focal
spot. This effect is called
penumbral blurring, see the
following section.

thermally stable, thermal drifts cannot be easily corrected afterwards in reconstruc-
tion [101]. Therefore, a warm–up of the source is necessary to minimize the effect.
As proposed by Wang et al. [102] and Limodin et al. [103], in this study a minimum
warm–up time of 1 h is used for low– and 3 h for high–resolution scans. In addition
there are three other possible drift correction methods: source drift, sample drift,
and the tracking of features, like particles, during the rotation and apply an addi-
tionaladaptive motion compensation (AMC) algorithm. AMC delivers good results
for large particles but mostly temperature drift correction gives the best results.



3 X–ray Tomography 23

3.4.2 Penumbral Blurring and Shadow

These effects, also referred to as geometrical blurring, are directly related to the X–
ray source. Penumbral blurring is caused by a drift of the primary point source gen-
erated by the excitation bulb, see Sec. 3.2.1, which in reality has a finite dimension.
Additional shadows on the projection image are generated by secondary radiation
emitted and dependent on the tube design. Note that these two effects are practi-
cally a possible manifestation of the instabilities of the point source just described
in Sec. 3.4.1.

Penumbral blurring can also be “deliberately” produced by the X–ray source
itself. This can occur if the electron beam introduces too much energy into the target
material due to a non-optimal operating point. To prevent too much stress on the
target, the electron beam is slightly defocused and the area–specific energy input
decreases. The associated significant lateral expansion of the excitation bulb enlarges
the point source and the achievable structural resolution decreases. Especially for
high-resolution measurements, see Paper D, careful adjustment of the X–ray source
is therefore of greatest importance.

3.4.3 Cone Beam

As previously mentioned, the starting point of the X–ray radiation behaves like a
point source that emits radiation over a certain angular range creating a beam of
conical shape, as can be seen in Fig. 3.9-a.

Detector

Source

Sample

Projection Reconstruction

Distortion

a b c

Blurring

d

e500 µm

Figure 3.9: Cone beam measurement setup: Here, (a) the divergence of the beam leads to (b) significant
differences in the beam paths at the lower and upper parts of the sample. This causes (c)
radial grey value gradients, distortion, and (d) blurring. Note that the effect increases with
greater distance to the beam center—illustrated as (e) a pseudocolour image with high
intensity in red decreasing radially outwards to blue, representing the lowest energy value
of the captured beam area.

In addition to the loss of intensity due to the conical beam widening with increas-
ing distance, it also decreases significantly radially away from the beam axis29. If 29 Note that this effect is

also called multidetector row
effect because it is directly
linked to the number of ver-
tical pixel lines of the CCD
array. The more lines the
higher the artefact expres-
sion on the edges of the FOV.

the sample now extends out of the core cone, one can clearly see artefacts in the
projection image, see Fig. 3.9-b. More obvious are the effects on the reconstruction,
see Fig. 3.9-c, that appear as distortion, an artificial grey–value gradient, and blur-
ring, see Fig. 3.9-d30. Experience has shown that in the case of porous structures and

30 Note that also BH, see
Sec. 3.4.7, is one main reason
for blurring. In the given
example it is most likely a
superimposition of both ef-
fects.

particle samples, the first and last sections of an image stack (of approx. 50 images,
see also the calculations in Sec. 4.4.4) must be removed for quantitative evaluations
in order to prevent errors in the determination of distributed properties31. Fig. 3.9-e

31 A possible estimation of
the influence on the mea-
surements of the related
studies can be found in
Sec. 4.4.4

shows a 2D intensity profile of the cone beam with pseudocolours. Clearly visible is
the high intensity area in the middle (red) with a rapid decrease to lower intensities
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(yellow over green to blue) with the minima in the corner of the image (violet).
At this point it should be emphasized that the detector image is always the optical

magnified image of the projection on the scintillation screen. Thus, X–ray aperture,
VIS–optics and the properties of the scintillation material (homogeneity, sensitivity)
also have a decisive influence on the measurable intensity distribution on the flat
panel detector.

3.4.4 Out–of–Field

The out–of–field artefact is strongly connected to the ROI tomography, which has
already been discussed in Sec. 3.3.5. Kyrieleis et al. [88] states that scanning with
a small FOV inside a sample is like cutting a small region out of the sinogram (see
Sec. 3.3). Cutting edges leads also to a grey value gradient to the edges in the final
reconstruction (like with the cone beam artefact). More details can be found in the
Supplementary Material, Appendix D of Paper D.

3.4.5 Center Shift

When capturing a projection series, the rotation center has to be determined man-
ually while setting the acquisition parameters. This cannot be done with sufficient
accuracy and so has to be corrected afterwards. This process, applied before final re-
construction, is called center shift correction. It has to be performed for every sample
geometry, not only cylindrical shaped. One example can be found in Sec. 4.4.5.

3.4.6 Sample Drift

If there is additional sample motion apart from the rotation around its central axis,
there will be a visible shift in the series of projection images as can be seen in
Fig. 3.10. Clearly visible in high–resolution single particle analysis, this effect is
even more critical with a large number of particles where the drift distance increases
significantly in relation to the particle size and leads to a considerable change in the
reconstructed sample volume compared to the sample. Thus, minimizing particle
motion within the sample via a proper preparation method is essential for reliable
measurements on this size scale.

In practice, multiple reasons for this phenomenon have been observed which are
listed below in decreasing probability of occurrence:

1. The sample is not fixed properly on the sample holder32, either the adhesive 32 Sometimes it is not
possible to fix the sam-
ple, e.g. when investigating
the contact area between a
droplet on a substrate. In
this case the stage move-
ment has to be limited to
a minimum, e.g. no dy-
namic ring removal (DRR),
see Sec.4.4.6

attachment fails, or the glued contact area is too small compared to the sample
size, which can cause the sample being tilted under gravitational force when
warming up .

2. The structural integrity of the sample’s material is not guaranteed over the
whole measurement time, either the particle sample is not fixed within a ma-
trix, or the sample itself or the matrix material is not cured but only highly
viscous, which can cause particles to move or can create propagating bubbles.
Another possibility is that the matrix material is getting viscous under the
influence of the X–ray beam33 33 Measurements show that

integrally there is no signif-
icant temperature increase,
for the used sample size
only up to 1 K. Locally, it
could be different, which
is the only way to explain
rarely observed drift effects
when working with wax as
matrix material.

3. The sample holder movement, which is static when either the sample gets in
contact with the aperture of the X–ray source and changes its alignment in
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Figure 3.10: Example of a possible visualization method of the unwanted sample’s motion, in addition
to the rotation, using the standard deviation (stddev) translated into a grey scale image
(bottom). Here, the stddev is calculated from a series of projection images (top) captured
at a rotation angle of zero degrees, called drift series. Low stddev is indicated with black,
high stddev with white. Examples are given for (a) no, (b) light, and (c) strong drift. Note
that drift direction is indicated by the white arrow.

case of very small source–sample distances, especially when measuring inside
the sample away from the rotation axis, or the sample holder is bent. The
movement is dynamic, when the whole stage is tilted due to the excessive
tensile stress of supply lines.

Even if efficient methods are available to correct the movement of the sample, it
is better to suppress it as much as possible from the beginning. While capturing
the projection series, the starting position is re–allocated in constant intervals. This
image stack is called the drift–file. In the best–case scenario, all images show almost
no variation, see Fig. 3.10-a. Light drifts, as in Fig. 3.10-b, can be corrected while
reconstructing the volume data. If the drift is too strong, as can be seen in Fig. 3.10-
c, volume reconstruction is possible, but with increasing image artefacts, which
manifest as distorted air bubbles and ghost images behind real particle structures,
shown in Fig. 3.11-a to Fig. 3.11-c.

3.4.7 Beam Hardening

As mentioned in Sec. 3.2, the polychromatic X–ray spectrum changes as it passes
through matter. While high-energy X–rays can penetrate both large radiation lengths
and highly attenuating phases, low–energy quanta are absorbed faster. The sum sig-
nal of the projection image on the detector is thus significantly higher on the edges
areas of strongly absorbing regions than in the centre areas. Fig. 3.12-a shows an ex-
ample of a mercury droplet on a less absorbing substrate. Here, beam hardening (BH)
causes an increased centre–to–edge glowing that is represented by a convex curve
of the cross–sectional intensity profile. If an increasing BH correction is now applied,
the curve approaches a straight line, the ideal correction factor for reconstruction
has been found. If this correction is exceeded, a concave curve indicates overcom-
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Figure 3.11: Manifestation of the motion artefact in the final reconstruction showed on exemplary sec-
tions. (a) shows no, (b) light, (c) and strong sample drift leading to a shadow image of the
structure which in this case are single particle measurements. By a fortunate circumstance
the drift strength is visible more clearly in air bubbles included within the epoxy matrix:
a-1→b-1→c-1. In case of a strong drift there is also a significant shift of the particle (c-2)
and the matrix border (c-3).

ReconstructionProjection Beam 
hardening

Overcom-
pensation

Best fit

a b

c d

Figure 3.12: Examples visualizing the BH artefact: On a (a) highly X–ray attenuating phase, which
in this case is a mercury droplet placed on a alumina substrate for 3D contact angle
measurements. The effect can not be estimated by judging projection images but can
clearly be seen in the referring reconstructed sections. The cross section marked in (a)
gives (b) different lateral intensity profiles depending on the applied BH–correction factor.
The correction optimum is reached, when the profile reaches a plateau. The same effect
can be seen in (c) a second example consisting of mineralogical phases causing glowing
and streaks, (d) a single aluminum oxide filter element appearing as streaks on edges.
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pensation, see Fig. 3.12-b. Other manifestations of BH could look like starbursts and
streaks34 (see Fig. 3.12-c) or light–shadow effects (see Fig. 3.12-d). Best way to avoid 34 Sometimes called metal

artefact [104].
BH is to apply sufficient filtering (see Sec. 3.3). The challenge always is to keep bal-
ance between filtering and reasonable exposure time. The most interesting question
is how BH correction influences quantitative measures. Surely, strong BH has to be
avoided, but correction algorithms also alter the image information and sometimes
it is better to live with a light BH than to overcorrect the image [105]. Note that an
assessment of beam hardening based on projection images only tends to lead to an
underestimation of the effect in the final reconstruction. One strategy to avoid BH is
by applying suitable source filters, which is presented in Sec. 4.4.2.

3.4.8 Rings

As already mentioned, the flat panel detector consists of a pixel array, each of which
has a slightly different sensitivity. Under different rotation angles this variance is
always pinned to the same location within the projection image, except for defective
pixels not visible to the naked eye. After reconstruction, however, the appearing
structure is clearly recognizable as rings, which are comparable to the structures
produced by a dipping object on a fluid surface. To prevent the formation of such
ring structures, the sample is shifted randomly in a plane with constant source–
sample and sample–detector distance. This process is called dynamic ring removal
(DRR) and discussed in detail in Sec. 4.4.6. The location of the detector (same for
each pixel) is therefore different for every projection image. A subsequent software
alignment guarantees a correct starting point for the final reconstruction. The only
thing to note is that this form of correction reduces the possible FOV by a few pixels
(about 10). In this study, DRR has always been applied. Because all particle samples
are embedded in a matrix (also see Sec. 4.1), DRR–induced movement is not critical.

3.4.9 Noise

The sigal–to–noise ratio (SNR) is a measure for the signal quality. The question is
how much the measurement signal can stand out from the background noise. As
discussed by Buzug [74], the SNR grows with the root of the mean value of the
number of photons arriving at the detector. For a low photon number, the noise of
the system35 is the dominant effect and leads to a random pixel structure that is 35 The total noise is com-

posed of the quantum noise,
which is the statistical fluc-
tuation in scattering and ab-
sorption of the X–ray pho-
tons in the scintillation ma-
terial, and the detector noise,
which is the thermal noise of
the electrons.

commonly referred to as “noise”. Buzug specifies 5 as the minimum SNR, meaning
that the signal carrying the information must be at least 5 times stronger than a
homogeneously noisy background. For the measuring device used in this study,
this value is determined at 5,000 counts/exposure. So, at least 5,000 VIS photons
per each single exposure must hit each detector pixel (or binned virtual pixel, see
Sec. 4.4.3). As it is shown in Sec. 5.1.3, 5,000 counts is much above the minimum
SNR proposed by Buzug. More details regarding SNR, in particular the role for the
final image quality, is also discussed in this section.

3.4.10 Partial Volume

Whether a structure can be identified metrologically by means of tomography de-
pends on its relation to the size of the smallest finite tomographic element—the
voxel. Every voxel is a discrete digital representation of the related object volume,
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summarizing attenuation signals from all phases inside this region, resulting in a
nonlinear average grey value. Thus, partial volumes are no longer distinguishable
from each other. In case of particles, this could lead to blurry edges and segmenta-
tion errors of contacting particles, e.g. in a loose bulk. Details on the partial volume
effect (PVE) can be found in Appendix B of the Supplementary Material of Paper D.

3.4.11 Summary

Additionally, there are numerous other artefacts that would exceed the scope of this
work. A short overview of all relevant artefacts, how they manifest themselves and
how to minimize them, especially when dealing with particle samples, is listed in
order of their origin from X–ray generation to detection in Tab. 3.236. More details 36 Recap how many of

these artefacts cause un-
sharpness in the final projec-
tion image. Maire and With-
ers stated correctly: “Images
come without error bars”.
Like in other measurement
workflows, minimizing er-
rors during image acquisi-
tion is essential before they
propagate.

are given by Davis and Elliott [107] and Boas and Fleischmann [108].
Besides the focus on the actual scan there are interesting approaches to include

additional information to realize a sufficient correction of motion–related artefacts.
One example is given by Salmon et al. [100] who proposes a post–scan procedure
on defined rotation angles to correct for very small geometry or position changes of
the sample. A similar method is used in the Zeiss Xradia 510 Versa, which is used in
this study, but here at fixed intervals during the measurement. In medical computed
tomographic imaging the situation becomes even more complicated. Here, in most
cases, the living “sample” cannot be assumed to be static. Organs such as the heart
and the breathing lungs cause significant but unavoidable movements, which of
course have a major effect on the quality of the tomogram. One example is given by
Zhang et al. [109]. To capture high quality tomograms of a breathing lung, they ap-
ply a model which is adapted to the patient by using a respiration–correlated image
set. Specifics regarding the causes of artefacts and the related reduction techniques
in the field of medical imaging are summarized by Barrett and Keat [110].

After a sufficiently long warm–up (minimizing temperature drift) of a well–tuned
X–ray source (min. penumbral blurring, shadow), a correct alignment (min. centre
shift) and fixation (min. sample motion) of the particle sample, the selection of X–
ray energies and X–ray filters suitable for the sample dimensions and the sampled
material (min. beam hardening), the selection of a sufficiently long exposure time
of a low–noise detector (min. noise), the partial volume artefact is to be considered
most critical with regard to the analysis of particle systems. In other words, the best
possible measurement results can only be achieved if errors are minimized in all the
steps just listed, since a certain PVE is an inherent feature of the actual setup of the
system.

In the following section, the considerations introduced here are explained in more
detail using examples from particle analysis.
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4 Practical Implementation

This section should serve as practical guide to particle analysis with the help of XRM.
Starting with the specific requirements that are placed on the sample in Sec. 4.1.
Followed by a statistical consideration of the sample size in X–ray tomographic
measurements in Sec. 4.2 with a possible way for validation of the results in Sec. 4.3.
Sec. 4.4 gives a short introduction into a reasonable measurement setup for particu-
late samples.

4.1 Particle Sample Requirements

In order to prepare a particle sample as good as possible with regard to subse-
quent image data evaluation, several requirements must be complied with. Starting
from two–dimensional analysis methods, it was obvious to adopt existing methods
from SEM [111, 112] and transmission electron microscopy (TEM) [113] and adapt
them accordingly. However, three–dimensional tomographic characterisation poses
particular challenges in terms of sample geometry, degree of dispersion and repre-
sentativeness of the particle sample [114, 115]. In the following section, these points
are only briefly discussed with focus on embedding techniques. Details regarding
wax embedding can be found in the methodological Papers A and B and for epoxy
embedding in Paper C respectively. Fig. 4.1 shows examples of particle samples,
where Fig. 4.1-e and Fig. 4.1-f referring to low resolution and Fig. 4.1-g and Fig. 4.1-h
referring to high resolution measurements for epoxy and wax samples.

db ca e gf h
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Figure 4.1: Particle samples: (a) Double layer mineralogical sample originating from MLA measure-
ments, (b) mm– and (c) µm–sized particles embedded in epoxy resin, (d) compressed as
loose bulk, particles in the size range below 10 µm (e) with graphite nanoparticles as spacer
embedded in epoxy resin and (f) as sample stack in wax, cut to small bars (g, h).

4.1.1 Geometry

As already discussed in Sec. 3.2, 3.3, and 3.4, the best case scenario would be a
sample that is rotationally symmetric, resulting in equal radiated lengths, and fits
into the FOV to avoid artefacts when performing ROI tomography. To achieve this,
the particle samples were prepared using a polymeric tube with an internal diameter
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of 2 mm that matches the target voxel size of 2 µm (as described in Papers A, B
and C). For the medium resolution measurements, performed with the XRM, the
sample cylinders are cut down manually to small angular bars with a diameter of
approx. 400 µm fitting to the minimum voxel size of the XRM, in this case 400 nm.
These scans are used as overview to identify appropriate sub–volumes for the high–
resolution scans with the nano–CT, see in Paper D and Sec. 8. Since spherical and
fibre particles were analysed in the multiscale analysis, the same sample bar could
be used with a voxel size of 64 nm even if the FOV is much smaller than the actual
sample size. Structures outside the FOV are not critical here because of the low
absorbing phases. Details regarding this so–called ROI scans are given in Sec. 3.3.5.
Contrary, in the correlative analysis, presented in Sec. 6.3, highly absorbing phases
from the used mineralogical samples would have caused significant artefacts and
increased exposure times significantly. Thus, the sample had to be reduced in size.
The wax matrix used in Papers A, B and D cannot withstand high–energy processes,
but the epoxy–nanoparticle matrix used in Paper C does. In the latter, so, it was
possible to use a laser mill to cut a cylinder with a diameter of 60 µm from the bars,
enabling to use this sample geometry for FIB–SEM analysis as well, see Sec. 8.

4.1.2 Dispersity and Homogeneity

As it is discussed in Paper A, the embedded particles should be well dispersed
and homogeneously distributed over the whole sample volume. This implies a
minimization of agglomeration and segregation effects. The two effects would result
in an insufficient distance between single particles, and thus, lead to problems in
the subsequent image processing, i.e., the particle segmentation. Examples of over–
segmented or under–segmented particles for six different particle systems can be
found in the Supplementary Material of Paper E.

Dispersity can be determined in different ways depending on what objects are
to be characterized, e.g. polymers [116], metals [117, 118] or nanoparticle assem-
blies [119, 120]. For the particle systems used in this study, agglomerates where
detected manually in a preview of the data set after the measurement. As stated in
Paper A, there were only a small number of agglomerates, which could also be iden-
tified by the method given in the next paragraph. A possibility for an automated
method is given by Wu et al. [121] and will be implemented for further studies.
Here, a measure for the share of agglomerates is determined by using a combina-
tion of morphological image processing operators37, a method first proposed in pore 37 A series connection of

erode and dilate allows
agglomerates to "merge"
into large particles due to
the very small inter–particle
spacing.

network analysis [122].
As also can be seen in Paper A, one possibility to quantify homogeneity is to plot

the volumetric solids fraction per cross–section over the sample height. This visual-
ization is used to decisively improve the sample extraction. Since the concentration
is aggregated for each cross–sectional image, however, no statement can thus be
made about local effects. This can be solved by a method proposed by Rudolph
et al. [119]. Here, Voronoi38 polygon meshes are used to divide cross–sectional 38 This method is also

known as pre–step in
image segmentation
algorithms [123].

images into sub–areas. The coefficient of variation of these individual areas can
be used as a quantitative measure for the homogeneity of each cross–section. A
good overview of further methods for particle systems is given by Crouter and
Briens [124].
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4.2 Statistics

In addition to the requirements already described, the particle sample must of
course be representative of the population. Sampling of particulate material is a
sequence of subsample extraction, e.g. from a mineral deposit, assembling a ho-
mogenous mixture, sample conditioning, and sample splitting in order to ultimately
obtain a representative analytical sample. All these four steps are subject to errors.
A detailed description of the possible individual errors will not be given here. The
interested reader is referred to the work of Gy [125, 126].

A more detailed insight into the most critical part, the statistical representative-
ness, is given in Paper A and D. For the purpose of statistical representativeness,
the contributions are grouped according to the number of examined particles. The
present work is in the order of over 1,000, in the case of Paper A and Paper C over
20,000, particles per sample. However, this list is only intended to provide a rough
overview and is not to be understood as a full review.

4.2.1 Single Particle Properties

In tomographic single particle analysis, either the spatial distribution of internal
structures or phases as well as the structure and homogeneity of particle layers
are of interest. Evans et al. [39] perform XRM measurements on mineral grains and
compare them with MLA regarding grain size distributions. Lowe et al. [41] analyse
the microstructure of TRISO–particles39. Here, a standard SEM analysis of an embed- 39 TRISO stands for TRi–

structural ISOtropic parti-
cle fuel. These are parti-
cles for high energy reactors
comprising of several layers
with an uranium core.

ded, cut and polished sample would alter the particle’s structure by destroying the
porous network which is of main interest. Bhuiyan et al. [127] also analyse pores
regarding their size distribution within iron ore green pellets40 to guarantee optimal

40 A hard porous sphere,
typically 8 mm to 18 mm
in diameter, containing var-
ious aggregates in addition
to iron (approx. 70 %) raw
material for the production
of raw iron in a blast furnace
process.

heat transfer properties for the pelletizing processes. Garcia et al. [42] determine
the interphase area of copper ore particles before and after comminution to quan-
tify the degree of decomposition and so to optimize process characteristics. Sondej
et al. [128] investigate coating layer morphology and porosity as a critical factor for
dense layers of functional particles in pharmaceutical applications.

TRISO Pellet

100µm 1mm

4.2.2 Properties of a Limited Number of Particles (10 to several 100)

If the composition of individual particles is known from previous investigations
or is not of interest, the next step is to understand the relationships between dif-
ferent particles. This task requires a particle collective that has been preserved as
far as possible in its original state. This is contrary to the requirement for a well–
dispersed particle sample, which is beneficial for an optimal particle segmentation
image processing workflow (see also Sec. 5.2) but problematic in terms of structural
parameters, such as particle orientation and packing density of the bulk, which
cannot be determined as the related structures would have been destroyed.

Videla et al. [129] determined the composition and spatial distribution of mineral
phases. The data is also used for finite mixture distribution (FMD)41 modelling. Sit- 41

FMD are probability dis-
tributions used for mod-
elling data, assuming that
they contain subsets of ob-
servations (clusters). This
can be used to determine,
for example, the number of
component distributions in
the mixture as well as the
parameters of these distribu-
tions.

tner et al. [130] extend this method by using an additional X–ray energy dispersive
detector. Basically, this method is an extension of 2D MLA into the third dimension.
As will be shown in the following chapters, the use of X–ray computed tomography
is non–trivial for several reasons. Alizadeh et al. [131] analysed the shape driven
segregation during heap formation. Here, XRM data is used to validate a clumped
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spheres approach42 used for discrete element method (DEM) simulation of particle 42 Here, an attempt is
made to replace the non–
spherical particle volume
with a certain number of
spheres of different sizes. Al-
izadeh et al. stated that “the
effect of particle shape is not
limited to the rolling mecha-
nism of the particles, rather it
affects the particles contacts in
a more complex network”. This
is precisely what builds the
bridge to filtration [47].

bed behaviour during build–up. In this regard, Thompson et al. [132] proposed a
method to create something like benchmark datasets for a latter error estimation by
using artificially created packing structures, like cubic, rhombohedral, and random
sphere packing. Babout et al. [133] investigate granular materials to find the most
promising ones for numerical simulations. Here, particle shape as key parameter
is captured with XRM on a limited number of particles giving a reasonable amount
of voxels per particle in a certain FOV. Bagheri and Bonadonna [44] analysed ap-
prox. 300 regular and irregular shaped particles to predict drag coefficients. They
also compared the results from XRM with results from 2D SEM and a 3D scanner,
which shows that the size range is above the one in the presented papers. All these
studies show the high value of 3D datasets, but with the limited number of particles,
it is not possible to describe distributed properties in sufficient detail, especially
when going to non–spherical particle systems.

4.2.3 Particle Populations with Distributed Properties

Some measuring devices already provide pre–aggregated values, either from dis-
crete measurements or derived via mathematical models. But as already mentioned,
only single particle information can be used to determine single property distri-
butions on the one hand and correlate them in a multidimensional manner on the
other. Distributed particle properties such as size and shape can only be determined
by collecting enough distinct particle information. Note that the focus in Papers A
to E is on particle size only, although the presented methods can also be used to
determine other particle–discrete characteristics.

For example, Bhuiyan et al. [127] determine particle size distribution of iron ore
green pellets. Cepuritis et al. [134] do the same for the specific surface area on the
example of crushed concrete particles. Fu et al. [135] analyse particle packing in
pharmaceutical powders using a model system of spherical particles validating a
DEM model for particle bed simulations. Bernier et al. [136] characterize powder
for additive manufacturing. Löwer et al. [47] performed filtration experiments to
predict micro processes, filter cake formation and porous media flow characteristics
on single particle/single pore level, which until now have mostly been described
in terms of models with integral parameters. The precise knowledge of the related
parameter distribution itself, but also in terms of the spatial distribution, enables a
more accurate prediction and optimisation of the macroscopic process properties.

The question is how many particles are needed for a sufficiently accurate de-
scription of property distributions, e.g. particle size. As described in Paper A, some
models are under the assumption that there is no initial information about the par-
ticle system of interest. In most cases, however, additional information is provided
by other analysis methods, from supplier specifications, or from the production
and comminution process. For example, Masuda and Iinoya [137] describe the the-
oretical basis for a log–normal distribution, and test the theoretical assumptions
by comparing results from simulations [138] that confirm the theoretical results.
Wedd [139] challenge the assumptions by comparing results from laser diffraction
measurements with good agreement for a glass bead particle system. This example
shows that, generally speaking, just as the average value approaches more and more
the expected value with an increasing number of measurement points, the empiri-
cal distribution function, i.e. the distribution of the measurement values, converges
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towards the actual distribution. From this, a confidence band can be derived that is
described differently for different distribution types [140, 141].

The required number of particles for a reliable measurement is therefore defined
by the size of the error that is acceptable within a certain confidence interval, the
prior knowledge of the process, which gives an indication of the expected distribu-
tion and its variance. It is also defined by the type of the particle system, which can
be monodisperse or polydisperse, spherical or non–spherical, comprise of one or
multiple orders of magnitude. As stated in Paper A, the number of particles used
for low–resolution and medium–resolution measurements is clearly above the cal-
culated minimum. The high–resolution measurements used for the characterization
over multiple size scales in Paper D is combined virtually to reach the minimum
particle number.

4.3 2D Validation

Image–based measurement methods should most reasonably be compared with
other image–based methods. As shown exemplarily in Paper A, it has proven to
be very beneficial to validate quantitative results from tomographic measurements
with data acquired from 2D image analysis methods like optical microscopy or
SEM. In particular, this “optical inspection” gives essential information on special
features within the particle sample, e.g. satellite particles or hollow structures, that
may cause problems in image processing. Certainly, results in this respect are to
be critically questioned, especially with regard to non–spherical particles. Since
integral methods, e.g. laser diffraction, strongly depend on assumptions made by
mathematical models. The application of these models should be considered even
more critical, since the possibility of visual control, even if only by random sampling,
is missing.

SEM images were also used in this study to validate the results from tomographic
measurements in terms of particle size. This effort pays off, as it provides a com-
parative value that does not allow calibration of the system due to the stereological
bias, but can provide indications of possible errors in the workflow of tomographic
image data evaluation. This method was used in Paper C and Paper D.

4.4 Measurement

4.4.1 X–ray Microscope

Fig. 4.2 shows the XRM, type Zeiss Xradia 510 Versa. The device is encapsulated
inside a lead–plated casing on top of a vibration–damped stone plate. Fig. 4.2-a
shows the source and detector assembly which can be moved on a slide to reach a
certain geometrical magnification (first step of magnification). The sample on the
sample holder can also be moved in all three spatial axes to find an appropriate
FOV and to align the centre of rotation. Spectral filters (LE: low–energy, HE: high–
energy) can be manually applied in front of the aperture, see Fig. 4.2-b,detail, to
reduce BH, see Sec. 3.4.7. The optics (second step of magnification) are mounted on a
lateral sliding table—0.4x objective on one side, 4x/20x/40x mounted on a rotating
turret on the other side (see Fig. 4.2-c,detail). Pictures and details of the setup, can
be found in the Appendix C of the Supplementary Material of Paper D.
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a b-detail

0.4x

4x

20x
40x

c-detail

c
bSource

Detector

Optic

Figure 4.2: X–ray microscopic setup with (a) the overall view with the X–ray source (left), the sample
(middle), and the detector (right). Also (b) the detailed sample mounting also showing the
applied source–filter covering the aperture. Furthermore (c) the detailed X–ray microscopic
optic with different magnification steps, which are either 0.4x(a), 4x, 20x, or 40x.

4.4.2 Source Filter

As already mentioned in Sec. 3.2.1, the X–ray radiation is filtered naturally by air
in the system and artificially before reaching the sample by applying filters. This is
done to cut off low energy parts of the polychromatic spectrum to increase transmis-
sion for high X–ray attenuating materials and to reduce artefacts. Fig. 4.3-a shows
the aperture of the X–ray source with empty filter slot.

a b c d

Figure 4.3: X–ray filtering to avoid the BH artefact: (a) Aperture (indicated by arrow) with empty filter
slot, (b) filter collection for two different energy ranges and (c) applied filter elements for
low–energy (LE) and (d) high–energy (HE) filters. Note that the filter thickness correlates
with filter strength; (c)→LE1, (d)→HE6.

The available filter collection for low energies (LE, 30 to 80 keV) and high energies
(HE, up to 160 keV) can be seen in Fig. 4.3-b. Mounted LE and HE filters are shown
in Fig. 4.3-c and Fig. 4.3-d, respectively. Note the increasing material43 thickness, 43 The filter material is

optically transparent with
unknown composition.
Probably a synthetic crystal
structure, which shows spe-
cific absorption properties
by doping with foreign
atoms in addition to the
variable thickness, see also
Appendix 10.3.

most apparent in the case of HE filters. The filters are selected according to the
energy range, which in turn depends on the selected optical magnification. The
referring guideline for the filter selection is given in Tab. 10.1 in the Appendix 10.5.

A reference image is taken when the sample is set up. From this, a transmission
range for the sample is estimated and compared with tabulated values depending
on the selected energy and optical magnification. If the measurement time is suf-



4 Practical Implementation 36

ficient, filtering is done rather conservatively. It is better to use a filter one class
higher, especially to avoid BH artefacts. Note that moderate filtering does not have
an influence on the initial beam shape but significant influence on the number of
generated VIS photons represented by detector counts.

In addition, Fig. 4.4-a to Fig. 4.4-c show sample projections of the same parti-
cle sample at different energy levels and without filtering 30 keV/2 W, 80 keV/7 W,
and 120 keV/10 W respectively. Note the slow fading due to higher transmission at
higher energies. More and more photons are passing the sample without generating
an absorption contrast. This is of course a minor problem to single phase systems,
because a distinction between different materials is not necessary here. But insuf-
ficient contrast could lead to a significant loss of image information when dealing
with low–absorbing material and multiphase systems, see also Sec. 5.1.

a b c

d e f

Air (no filter)                  LE2                              LE4                                LE6                                HE2                                HE4                               HE6

30 keV / 2 W 80 keV / 7 W 120 keV / 10 W

Figure 4.4: X–ray source settings starting from (a) low energy to (b,c) higher energies. As photon
energy increases, the sample gets increasingly X–ray transparent—structures slightly dis-
appear but remain sharp. The effect of filtering manifests in a fading of the whole structural
information, shown here (d) without filter (e) with low–energy (LE) and (f) high–energy
(HE) filters. Note that together with this also the photon number decreases significantly.
So, to achieve reasonable scanning times, filtering cannot be applied independently from
the samples properties.

4.4.3 Detector Binning

Binning detector pixels to “virtual” pixels is comparable to the ISO44 value, which 44 Analogue films are avail-
able in fixed ISO levels. low–
ISO values, starting with
ISO 50 and 100 high light sit-
uations (outside with sun),
and high–ISO values for sit-
uations with less light (in–
room).

represents the light sensitivity in the analogue photography. By virtually combining
a certain number of detector pixels npx in XRM45, exposure time tex can be dramati-

45 For the used detector
these are 2, 4, or 8.

cally decreased:

tex =
1

n2
px

(4.1)

Fig. 4.5 shows the binning modifications related to the projection images. Note
that with higher binning also the image pixel size increases while the number of
effective pixels decreases. In the example given in Fig. 4.5 this means for binning
1 an effective pixel number of 19542 pixels46, and for binning 8 an effective pixel 46 Note that the physical

pixel number is 20482, but
DRR reduces this number to
an effective pixel number af-
ter reconstruction. For more
details see Sec. 4.4.6

number of only 2402 pixels. So, binning makes the image “grainy”, which can be
seen in Fig. 4.5-e.



4 Practical Implementation 37

a

c d e

Binning 1                                    2                       4                                   8

b

Figure 4.5: Binning of the detector pixels in projection image (a) shown by detail enlargements (b to e).
The eight by eight matrix is filled with red pixels representing the final size of the binned
(virtual) pixel. Note the appearing pixel structure in with binning eight in (e). As the pixel
size stays constant, the image size decreases by the referring binning factor.

4.4.4 Cone Beam Artefact Compensation

As described in Sec. 3.4.3, the conical–shaped X–ray beam produces artefacts, which
leads to a grey value gradient, blurring, and distortion. All three effects are possible
causes for particle segmentation errors. Fig. 4.6 shows a possible way to analyse
this quantitatively for individual samples.
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Figure 4.6: Visualization of the cone beam artefact (left) by determining the standard deviation of
a small rectangular area “sliding” over each tomographic section from left to right and
from top to bottom (right). Note that a higher standard deviation (red) indicates structural
features of high, a lower (green, blue) of low contrast.

A square geometry is slid over the image surface from left to right and from top
to bottom with an offset of one pixel for each iterative step. All pixels within each
square are aggregated to determine the standard deviation, which, as shown in
Fig. 4.6, has then been colour–coded. Artefacts that are “destroying” image informa-
tion should be represented by a lower contrast (see Sec. 5.1) and a lower standard
deviation. This can be clearly seen on the top and bottom of the standard devia-
tion maps for both directions. A practical question now is how many sections are
influenced and have to be removed from the initial dataset to prevent errors in the
subsequent image processing workflow. A straightforward solution is to calculate
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the projection angle47, which is determined by the FOV and the distance between the 47 Note that this angle is
often referred to as cone an-
gle or cone beam angle. This
term is deliberately not used
in this work, as it conveys a
direct reference to the beam
shape and considers this to
be the causal variable for
the artefacts. However, the
artefact arises during the
back projection over the ob-
ject space and can be min-
imized by other reconstruc-
tion methods [142].

X–ray source and the sample that is in this case referred to as xs. As can be seen
in Fig. 4.7-a, there are regions on the top and on the bottom of the FOV that are
illuminated by X–rays but not projected on the scintillator (and then captured on
the CCD). The tangent of the projection angle α equals:

tan(α) =
FOV
2 ⋅ xs

(4.2)

with FOV as the field of view. Via the corresponding alternating angle (b), the
opposite cathetus ex converted into a number of sections Nex results in:

Nex = tan(α) ⋅
FOV

2
⋅

1
voxelsize

=
FOV2

4 ⋅ xs ⋅ voxelsize
(4.3)
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Figure 4.7: Quantification of the cone beam artefact: (a) non–projected areas on the top and bottom of
the FOV suggest an estimation by (b) triangulation to calculate (c) the number of sections
that have to be excluded from a quantitative analysis. Note that the red line indicates
the fixed source–sample distance that was used in the studies to guarantee a comparable
projection angle.

Fig. 4.7-c shows the corresponding number of sections that have to be excluded
from the dataset due to the cone beam artefact. Both measurement points for this
work are marked in blue. The corresponding source–sample distance xs of 10 mm
used in this work48 is marked in red. The high–resolution scans with the 40x objec- 48 This distance is kept con-

stant to guarantee a fixed
projection angle for all mea-
surements of this study.

tive with the corresponding FOV of approx. 400 µm requires 10, the low–resolution
scan with the 4x objective and the corresponding FOV of approx. 2 mm requires 50
sections to be removed on top and on the bottom of the FOV49. Fig. 4.8 shows the 49 Note that the correspond-

ing measurements were per-
formed with binning 2. In
case of binning 1, the num-
ber of sections has to be dou-
bled.

effect for a sample dataset from Paper C.

4.4.5 Center Shift Correction

Mostly done in automatic mode, the center is shifted iteratively by searching for a
maximum in image contrast. Fig. 4.9 shows an example of a quartz particle sam-
ple embedded in a wax matrix. The misalignment is evident in the ring–shaped
artefacts, which become elliptical for elongated objects.
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1. Slice 10. Slice 20. Slice 30. Slice 40. Slice

Figure 4.8: Verification of the cone beam artefact: Clearly visible in the first section (left) but disap-
pearing after approx. 40 sections (right). Note that the region of the unaffected area, which
is enclosed by a yellow circle, increases slightly, not volatile.

a

b

c f

e

d

Figure 4.9: Exemplary sections of a quartz particle sample image stack starting from misalignment,
where no correction is applied, to a suitable center shift correction (from a to c) and respec-
tive magnified details (from d to f).

Of course, these artefacts have a considerable influence on the identification of the
shape and size of objects and is not always as clearly visible as in the example shown.
It also has to be mentioned that the center shift correction is always connected to the
applied drift (see Sec. 3.4.6) correction of the series of projection images. That means
after changing the drift correction mode, a new center shift has to be calculated for
the altered dataset.

4.4.6 Dynamic Ring Removal

Fig. 4.10 shows an example of a ring structure (details of this effect see Sec. 3.4.8)
appearing when no random–like shift of the flat panel detector is applied. The sam-
ple is a small cut–out of a periodic filter cloth structure provided by the subproject
A750 (cross–flow filtration) of the SPP 2045. Rings are only visible in the top view of 50 Details regarding this

and all other projects of
the Priority Programme
SPP2045 can be found
on the website: https://
tu-freiberg.de/fakult4/
mvtat/SPP2045/Projekte.

the projection image stack, see Fig. 4.10-b. Part Fig. 4.10-c shows the ring structure
from the side view. Ring formation is visualized in Fig. 4.10-d.

Note that the lateral shift within the projection plane has to be corrected by an
automated alignment of the projection image series, the so–called dynamic ring

https://tu-freiberg.de/fakult4/mvtat/SPP2045/Projekte
https://tu-freiberg.de/fakult4/mvtat/SPP2045/Projekte
https://tu-freiberg.de/fakult4/mvtat/SPP2045/Projekte
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d

TOP view

SIDE view

Figure 4.10: Example of a ring artefact without random–like detector shift (see Sec. 3.4.8). (a) A pe-
riodic mesh structure is (b) generating concentric rings in the projection top view, that
(c) appears as distortions in the side views. The origin of the circular shape is (d) shown
exemplarily at a back–projected defective detector pixel represented by a black pixel in
the projection image. Note again that for illustrative purposes the dimension is reduced
to two dimensions here, resulting in a 1D projection image giving a 2D reconstruction.

removal (DRR). If one puts all images on top of each other, there is no clear border.
It’s like a stack of paper that has to be to realigned after falling down. However,
since the anchor point is inside the border, the excess border must be cut off so that
all images are the same size again. This leads to a final pixel number not of 10242

but of 9952 to 9992 pixels. Of course, since the system works with isotropic voxels,
the number of sections in the reconstructed image stack is also reduced. Also note
that there are measurement situations where DRR is not a good choice because of
additional stage movement that could cause physical sample drift. One example is
given by Santini et al. [143] who did 3D contact angle measurements with a single
droplet on a surface structure. Another example here is given in the Appendix 10.2.

It should be mentioned here that the correction can also be done after the measure-
ment. One approach is to apply algorithms to reduce the artefacts directly within
the object space but with a coupled degrading of image information. Since a ring
in object space is a line in the sinogram (details see Sec. 3.3.4), it can be removed
more easily but also with loss of information. A more detailed presentation on the
removal of artefacts is beyond the scope of this paper. A promising approach is
provided by Yoon et al. [144].
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Most image analyses based on tomography data are of qualitative nature. Some-
times, the main focus is only the three–dimensional visualization of objects, which
is not wrong. But considering the potential of the measurement methodology, the fo-
cus should be on a quantitative analysis of the tomographic datasets. In most cases,
this requires a distinction between different features (structures, phases, particles).
Starting with a stack of grey scale images from the reconstructed dataset, a huge
pool of image processing strategies and algorithms is available, each one altering
the image itself, and thus, producing an error. Single pixels have no “memory”.
Without knowing the image processing workflow, which is documented in detail
in Papers A, C, D, it is very difficult to evaluate quantitative image analysis data.
The best case scenario would be to store raw image data and workflow separately.
In modern image processing software this is done by applying layers. Each layer
represents a reversible step, leading to the final result.

One reasonable scenario for tomographic datasets is presented in Paper E. In
the following Sec. 5.1, the most relevant parameters determining image quality are
introduced followed by a brief discussion of two possible workflows for image pro-
cessing with the focus on particle segmentation in Sec. 5.2. The threshold–based
segmentation, which is used in Paper A, and the machine–learning assisted seg-
mentation, which is used in Paper C.

5.1 Image Quality

As focus should be on gaining best image quality, one has to define what quality
means when dealing with pixel–based image data. A suitable way of describing
the image data is required that allows not only analysis but also the comparison of
different images.

5.1.1 Grey Value Histogram

The grey value histogram is the frequency distribution of all grey values of an image,
plotted against the grey value itself. In other words, it shows the number of pixels
assigned to one distinct grey value from the given value range of all possible grey
values. It is determined by the X–ray spectrum, e.g. photon energy distribution and
integral intensity, the hardware setup of the tomographic device, e.g. number of de-
tector pixels, objectives and finally, the properties of the sample itself, e.g. diameter
and X–ray absorption coefficient.

The most important descriptors for particle analysis are briefly explained below.
It should be noted that the image quality cannot be assessed with the human eye
in every case. For example, high overall sharpness and contrast can be counterpro-
ductive for particle segmentation. In quantitative analysis, the properties have to
be considered in a much more diversified way. To stay with the example of particle
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segmentation, a slight blurring within equal phases (noise reduction and prevention
of over–segmentation) combined with sharp edges is ideal for optimal results.

In all cases, a visualization method is needed that makes it possible to evaluate
even very small differences. A histogram of all grey values is the proper graph used
in image analysis. This visualization method collects distinct grey values of all pixel
in bins of equal size. Depending on the data type, the available number of grey
values can be interpreted as third axis, the “bit depth” (8 bit, 16 bit or 32 bit). Fig. 5.1-
a shows an exemplary section maximized to pixel level. Each pixel grey value of the
image is a distinct selection within this grey scale (Fig. 5.1, marked red).
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Figure 5.1: Visualization of a grey scale histogram’s origin: (a) reconstructed section from a spherical
soda–lime glass particle sample magnified twice to a resolution where the pixels are clearly
visible. Every pixel has a certain number of available grey values represented (b) by a third
axis where the actual value in the image is marked in red. Note that due to the finite
number of possible grey values determined by the number of bits within the file this axis
is not continuous but distinct.

Fig. 5.2 shows three pairs of example histograms. On the left, the reference state,
which is compared with a different state on the right. Note that the grey value 0
refers to black (the image frame) and maximum value 255 refers to white. Changes
are discussed based on the referring histograms:

1. One rectangle with a specific grey value on the left is supplemented by eight
further rectangles on the right, see Fig. 5.2-a. The position of the bars (the
grey value) remains the same, only the height of the rectangle’s grey value
increases51, see Fig. 5.2-b. 51 As the same amount of

voxels turning to grey are
not white anymore, the his-
togram bar of 255, repre-
senting white, is decreasing.
Due to the logarithmic scale,
which is chosen for visuali-
sation purposes, this is not
clearly visible. Note that this
effect refers also to (3), but
not to (2), because the are
covered by the objects re-
mains the same.

2. Four different shapes (rectangle, triangle, circle, needle) in the upper left corner
on the left are distributed in all four corners of the rectangle on the right, see
Fig. 5.2-c. No change can be observed. Same slope in both cases as can be
seen in Fig. 5.2-d. The grey scale histogram does not depend on the location
of shapes in the image.

3. The four rectangles, each with a unique grey value, are supplemented by five
additional rectangles, each also with a unique grey value, see Fig. 5.2-e. In the
histogram, five more bars of the same size are added at the respective grey
value positions, see Fig. 5.2-f.

So it can be seen that the histogram representation is well suited to capture the
essence of an image, independent of the actual 2D–projected structures. But without
further calibration, it cannot serve as a quantitative measure.
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Figure 5.2: Image objects and their relation to the grey value histogram: (a) a larger number of pixels
assigned to a specific grey value results in (b) a higher peak in the histogram. In contrast,
(c) the position of objects at a constant pixel number has (d) no effect on the histogram’s
values. Note that even the shape and the number of objects in the image are of no interest
here. The only thing that matters is the number of pixels assigned to a certain grey value. (e)
This number of distinct grey values in the image is (f) directly transferred to the histogram.
Note that the dotted lines in (b) and (d) are only to guide the eye for direct comparison.

5.1.2 Resolution

Why is there a need for a second optical magnification step52 and why should it 52 Note that a test with-
out additional optical mag-
nification is not possible
in the current measurement
setup. In addition, the detec-
tor would have to be moved
away from the sample by
nearly 1 m, which the instru-
ment dimensions do not al-
low.

be kept variable to apply different steps? Fig. 5.3 shows a projection image of a
filament–like structure that was captured at highest reasonable magnification inside
a particle, resulting in a final voxel size of about 400 nm53.

53 From a purely me-
chanical point of view, a
smaller voxel size would be
conceivable by increasing
the sample–detector dis-
tance at the highest optical
magnification to one tenth,
i.e. 40 nm. Practically, it is
strongly limited mainly by
the size of the focal spot
(penumbral blurring, see
Sec. 3.4) and the homo-
geneity of the scintillator
material.

By adapting the sample–detector distance for magnifications Fig 5.3-a 40, Fig 5.3-
b 20x, and Fig 5.3-c 4x, the product of geometrical and optical magnification keeps
constant. But even when adjusting the exposure time, it is not possible to maintain
the spatial resolution. This becomes most obvious when comparing the zoomed part
from Fig 5.3-a with Fig 5.3-c. The further one moves away from the sample with
the detector, the more geometric invariances of the cone beam become apparent. In
addition, the quantum yield decreases dramatically due to the quadratic decrease
in the number of photons, which leads to additional blurring at significantly longer
exposure times. Tab. 5.1 summarizes all numbers for the example from Fig 5.3 with
constant source–sample distance.
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cba

40x magnification 20x 4x
25s exposure time                                 50s                                                                100s

X-ray
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at distance
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40x            20x                                                                                                           4xd
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Figure 5.3: Influence of different magnification levels for identical voxel size, in this case 400 nm, on
the quality of the related projection image: (a) A filament structure inside a mineral parti-
cle with 40x magnification, same for (b) 20x and (c) 4x. As the enlarged image part shows,
the details and the contrast decrease dramatically when going to a lower magnification,
while at the same time the needed exposure time per each projection increases. This can
be explained by (d) the larger distances for lower optical magnification as the total mag-
nification has to stay constant to guarantee the same voxel size. The larger the distance
the higher arising errors, which are e.g. penumbral blurring, detailed discussed in Sec. 3.4.
The calculated values are summarized in Tab. 5.1. Note that also the scintillator thickness
has an influence on reachable resolution limits. Because this value is fixed and cannot be
changed it will be assigned to the overall optical system and not of further concern here.

The geometric magnification Mgeometric is determined by calculating the object
size on the scintillator screen with known source–detector distance and cone beam
angle by applying the arcus tangens. Then, the object size in the sample is calculated
by applying the intercept theorem. Dividing the latter by the source–detector dis-
tance gives the geometric magnification. The total magnification Mtotal is calculated
as follows:

Mtotal = Mgeometric ⋅Moptical (5.1)

As can be seen in Tab. 5.1, apart from smaller variations due to rounding error and
inaccurate angle indication, the products of all three magnification levels are almost
the same.

Table 5.1: Calculated total magnification as the product of geometrical and additional optical magnifi-
cation on basis of the example from Fig. 5.3. Differences in total magnification (they should
be exactly the same) are due to rounding errors and inaccurate angle indication (projection
angle in this case is between 0.75 and 0.77 degrees).

Distances in mm Object sizes in mm Magnification

Source-
Sample

Sample-
Detector

Source-
Detector

on
scintillator

inside
sample Geometric Optical Total

15 237.0 252.0 1.69 0.10 16.8 4 67.2
15 35.7 50.7 0.34 0.10 3.4 20 67.6
15 9.7 24.7 0.17 0.10 1.6 40 65.9



5 Image Analysis 45

5.1.3 Signal–to–Noise Ratio

van Daatselaar et al. [145] give a medical example, where mainly the influence
of the number of available projection images on the sigal–to–noise ratio (SNR) is
investigated. Projection images must therefore not only be exposed long enough,
but also be available in a sufficiently large number54 to minimize the final noise in 54 The author gain good

results with 180 projections
which seems very low. Re-
calling the rule of thumb by
Kyrieleis et al. [88] (compare
Sec.3.3), best image quality
using FBP would be approx.
520 projections. But as the
overall goal in medical ra-
diography is to minimize
the dosage penetrating liv-
ing tissue, this is perhaps a
good middle ground.

the reconstructed cross section.
As already discussed in Sec.3.4.9, a minimum number of 5,000 VIS photons is

needed per projection image to guarantee a good SNR. Strictly speaking, the SNR
should be evaluated separately for projection and reconstruction. This distinction
is omitted here, since with the applied FBP reconstruction algorithm used in this
study55 it can be assumed that the noise propagates from the projection to the re-

55 Note that there are
methods to reduce SNR,
e.g. by smoothing the
sinogram [89], or by
applying another recon-
struction algorithm [108],
e.g. iterative.

construction without decreasing. To guarantee a sufficient high SNR for each recon-
structed section, the projection must be as low–noise as possible. In the following
the term SNR refers to the projection image only. Fig. 5.4 shows the overview and
the detail image of a single particle measurement. Counts per exposure increase
from Fig. 5.4-a to Fig. 5.4-c.
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Figure 5.4: Influence of the exposure time on the SNR: (a) Projection image of a particle, where the
number of photons, with a median value of approx. 100, is much below the minimum of
5,000 for the given detector. The enlarged image parts clearly show image noise. Structural
information is lost. (b) one order of magnitude higher, at the given minimum, structures
became visible. The advantage of (c) the increase by a further order of magnitude can no
longer be assessed visually. (d) shows the referring grey value line profiles marked in (a to
c). The decrease of the fluctuation range with increasing photon number is clearly recog-
nisable. (e) shows the SNR, calculated with Eq. 5.2. As expected, the SNR does not increase
linearly but asymptotically. The enlarged part (f) shows a corridor of +/ − 2.5 % relative
error, meaning that a slight undercut of the minimum photon count will not decrease SNR
dramatically. Note that the source–sample distance is 15 mm in every case.

Although the 100 counts from Fig. 5.4-a are clearly below the recommended limit,
the actual structure can already be recognized and, at least for overview scans, one
has a good first impression of the sample. The visible image noise, on the other
hand, already disappears significantly in Fig. 5.4-b.

There are multiple ways to define the SNR based on different assumptions for
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the signal and the noise. One possible way is to use the reciprocal of the coefficient
of variation, which means the ratio of the average to the standard deviation of a
distribution [74]:

SNR =
Signal
Noise

=
µ

s
=

µ
¿
Á
ÁÀ 1

n−1

n
∑
i=1
(greyvali − greyval10)

2

(5.2)

The original grey values from a line profile of Fig. 5.4-a to Fig. 5.4-c are visualised
in Fig. 5.4-d. Going from very short (blue) to long exposure times (yellow), the
variation of the data points, representing the noise, decreases significantly. As can
be seen in Fig. 5.4-e, as expected, a higher exposure time, meaning higher photon
counts on the CCD detector, results in a higher SNR. This effect is not linear, but
converges asymptotically, meaning much longer exposure times will not increase
the SNR significantly. As illustrated in the magnification in Fig.5.4-c, the structure
even gets more blurry compared to the same magnified area in Fig. 5.4-b, which can
be explained by penumbral blurring and temperature drift of the X–ray beam.

Looking at the proposed minimum photon count of 5,000 photons per exposure,
see Fig. 5.4-d, this number refers to a SNR of approx. 52.5. As can be seen in Fig. 5.4-e,
assuming a 2.5 % relative deviation from this value, this gives a SNR of 50, which is a
photon count of about 4,500. So, going slightly below the 5,000 limit is possible with
an acceptable error. This small difference is only of interest for highly absorbent
phases and time–critical test series. In addition, it must be noted that in case of sam-
ples, which are smaller than the FOV, vertical areas outside at the top and the bottom
of the FOV are considered to be not critical in case of a low SNR, since the signal, and
so the noise too, is only “smeared” horizontally over the object space by the FBP
algorithm. The corresponding sections of vertical areas without object information
can be removed after reconstruction. In contrast, extending the exposure time from
35 s to 300 s, i.e. almost a ninefold increase, only leads to an increase in SNR to 66,
see Fig. 5.4-f. As the example shows, a balancing process is necessary here. Note
that this method is only a very rough estimation for SNR quantification. Another
approach for the SNR quantification without having a reference is given by Thong
et al. [146] who uses an autocorrelation function to separate signal from noise, as it is
known from signal processing [147].

5.1.4 Contrast and Dynamic Range

In the tomographic sample, one weakest and one strongest absorbing point exists.
These maxima form the so–called contrast range of the projection images, and thus
also of the later reconstructed volume. The dynamic range is the ratio between the
smallest and largest value, in this case given by a certain detector56. The question 56 The human eye is also

some kind of detector. As
it works logarithmically, we
are able to see something
in a dark room and also on
a sunny day outside. Note
that the dynamic range is
also used in audio and video
applications.

is, how the contrast, which is in our case needed to create a reasonable projection
image of the particle sample, fits to this dynamic range. If the contrast range exceeds
the dynamic range, the details at the upper or lower end of this spectrum are lost.
In the following, the focus will be on the dynamic range, as it is a detector property
that is directly related to the X–ray attenuation of the material.

The dynamic range indicates the ratio of the largest measurable signal to the
smallest signal distinguishable from the background noise. The overall system must
be designed in such a way that the scintillator efficiency matches the dynamic range
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of the VIS CCD detector [86]. As in optical photography, the aim is to capture as
much of the structural information as possible during a single exposure. There
are strongly X–ray absorbing phases, like metals, with a few detector counts, and
weakly absorbing phases, like air, with many detector counts. If this can only be
realized by combining measurements taken at different energies, this is called high
dynamic range (HDR) imaging. In X–ray tomography this is realized by varying
tube voltage [148] but is not part of the presented studies.

Same like in photography, an excessive number of photons57 can lead to a signif- 57 In case of the ZEISS Xra-
dia VERSA 510 these are
60,000 photons per exposure
and pixel.

icant or total loss of contrast and so, a picture carrying no information. In case of
X–ray tomography this means, that too many VIS photons will generate so many
electrons in the CCD pixel that the associated electronics will be overloaded. This
over–exposure is prevented by an over–exposure test before each measurement by
adjusting the exposure time accordingly.

Fig.5.5 shows the sample material becomes more and more transparent with in-
creasing exposure time (Fig.5.5-a to Fig.5.5-d)—its contrast and information van-
ishes. The ring shape of the growing area of over-exposure is related to the cone
beam (illustrated by the beam profile in Fig. 5.5-e, details see Sec. 3.4.3). The struc-
tures inside this ring58 is the projection of the structure of the scintillator material 58 Of course, this structure

is always included in the im-
age information, but it is re-
moved from the final pro-
jection by taking a reference
without a sample.

probably caused by diffractive photons generating a phase contrast.

a b c d

e

Figure 5.5: Overexposure of a projection image caused by increasing exposure time from (a) to (d).
The white circular area, which gradually shows up, is caused by (e) the conical shape of
the beam with highest intensity in the center (marked red).

5.1.5 Sharpness

As demonstrated above and visualized in Fig. 5.3, a certain magnification is achiev-
able with different lenses, even with low magnification. But due to the system inher-
ent blurring59, which increases with geometric distance, these are so–called empty 59 Blurring is induced

by different mechanisms
already described in Sec. 3.4:
temperature drift, penum-
bral blurring, cone beam,
sample motion, partial
volume.

magnifications—the spatial resolution is not equally increased with increasing geo-
metrical magnification.

5.1.6 Summary

As discussed in the previous sections, image quality is essential to perform reason-
able quantitative image analysis. All errors that show up in the projection image
manifest themselves to a higher or lesser extent in the reconstructed tomogram.
Fig. 5.6 summarizes all previously mentioned factors influencing image quality.

The particle sample, discussed in Sec. 4.1, the measurement, discussed in Sec. 4.4,
which is influenced by the system’s configuration, and the image artefacts, discussed
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in Sec. 3.4, are connected in multiple ways. If these can be controlled as precisely as
possible, errors in the following image segmentation steps can be reduced signifi-
cantly.
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Figure 5.6: Summary of factors influencing the quantitative image data evaluation. Corresponding to
already presented sections, main parts are here the system’s configuration, which directly
influences the measurement. The measurement and the particle sample can create artefacts,
all together having impact on the quality of the projection image. The reconstruction can
alter the image quality of the final tomogram used for the quantitative analyse.

5.2 Basic Image Processing Strategies

The image quality is decisively determined by the resolution, image sharpness,
image noise, contrast and dynamic range of the projection image and thus also of
the reconstructed image stack. Based on the grey value histogram, different image
pre–processing steps can be applied to create an optimal starting point for further
image segmentation. Schlüter et al. [149] give a review on possible strategies for
multiphase images obtained by XRM. The underlying image processing strategies
are described in detail in Papers A, C and D. In the following, only the main part
of the image processing routine will be explained by using the example of image
segmentation. Fig. 5.7 shows two possible image segmentation strategies based on
single grey value thresholding and machine learning algorithms. The embedded
particle sample, see Fig. 5.7-a, is reconstructed to a three dimensional volume as
can be seen in Fig. 5.7-b. For easier explanation, the image processing workflow
is reduced to two dimensions only. In a real case scenario, image processing is
categorized in 2D, mainly for image quality enhancement, and 3D methods, mainly
for all processing steps regarding the final particle segmentation. The overall goal is
to separate all particles within the image into distinct features that can be analyzed
to generate quantitative data.

5.2.1 Threshold–Based Segmentation

In threshold–based segmentation60, one grey value is determined that divides the 60 Due to the observer de-
pendency this is a critical
and non–trivial step [150].particle phase, which is light, from background, which is dark, see Fig. 5.7-d, a pro-

cess which is called binarization. Depending on the used algorithm this is working
more or less well, e.g. there are a lot of remaining noise–pixels, sometimes called
speckles, see Fig. 5.7-e. Artefacts are therefore removed using appropriate filters,
see Fig. 5.7-f. To calculate particle dimensions correctly, holes inside the particles are
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filled with white pixels, see Fig. 5.7-g belonging to the particle phase. Particles that
are very close to each other sometimes get in direct contact and are not separated
by at least one background pixel (black) layer61. 61 In the optimal case, this

effect has to be avoided by
a proper sample preparation
strategy, see Sec. 4.1

In this case a watershed algorithm [151] is applied that treats the image like a to-
pographic map separating adjacent drainage basins. Simple watershed is extremely
sensitive to noise pixels, which are black pixels inside white particle areas after ap-
plying a binarization algorithm. It is also not working properly for elongated non–
compact particles. In both cases, it can occur that the particle is divided into parts,
a phenomenon called oversegmentation62. Finally, these particles are recognized as 62 Modern image process-

ing workflows that are us-
ing watershed algorithms
can avoid this, for example,
by merging oversegmented
particle parts with the help
of Neuronal Networks [9]

connected and externally delimited areas of particle phase against the background
(marked light blue with unique identifier). In case of ROI–tomography, all particles
that are not completely within the FOV are discarded from subsequent analysis. All
steps of the threshold–based method have to be optimized for each new particle sys-
tem. In case of multiphase particles, the workflow gets more complicated, e.g. the
need for multiple thresholds or grey scale–based methods without prior binariza-
tion. Note that the workflow in Fig. 5.7 is idealised. Sometimes there have to be
additional image pre–processing steps or other information from the original image
has to be taken into account, like grey value gradients [152] for the generation of
particle–discrete markers [153, 154] that work as a kind of seed for the segmentation
algorithm.

5.2.2 Machine Learning Assisted Segmentation

Supervised machine learning assisted segmentation, also called feature–based seg-
mentation [155], in this example the trainable waikato environment for knowledge
analysis (WEKA) segmentation algorithm [156, 157], is based on a solid and repre-
sentative selection of images, as can be seen in Fig. 5.7-A. These images are used for
feature selection, in our case particle and background. Features are marked manu-
ally, indicated by yellow and green, see Fig. 5.7-B. This marking is done by shapes
and lines with different sizes and thicknesses, depending on the features. Very thin
lines between particles, for example, represent a characteristic that is used by the al-
gorithm to classify them as background. The algorithm learns on basis of rules how
to divide distinct features, see Fig. 5.7-C, step by step. As can be seen in Fig. 5.7-D,
the outcome is very similar to the threshold–based approach, but without additional
image processing and resulting artefacts.

Although this sounds like an attractive alternative, the quality of the segmentation
result is crucially dependent on the training data set which includes the manual
markers. The chosen approach of machine learning, as in the present case of the
decision trees, is theoretically easy to understand, but due to the large number of
decision trees and splits within the respective tree structures, it is no longer easily
verifiable. For a quantitative evaluation, the segmentation results are compared to a
manually segmented one that is considered to be correct. This dataset is also referred
to as ground truth. More details on this topic are given in Paper C, regarding the
used WEKA trainable segmentation algorithm, and in Paper D, regarding the neural
network approach, which was chosen here as an alternative.

Like it is described in Sec. 4.3, it is always good to use an additional validation
step, which was done in both the methodological papers and the case studies. Note
that a detailed description of the image processing workflow is given in all papers
with the corresponding sources.



5 Image Analysis 50

Despeckling

Fill holes

Watershed

Threshold-based Machine learning

a b c

Analysis

d

e

f

g

h

i

j

A B

C

D

Particle

Background

Feature

Speckles

Holes

Figure 5.7: Comparison of two possible particle segmentation strategies: (a) Acquisition of the sample
volume, (b) reconstruction to get the tomographic dataset, (c) represented by vertical sec-
tions. Threshold–based strategy to (d) separate particle and background phase. (e) Image
processing to determine the optimal threshold including (f) despeckling, (g) fill holes, and
(h) subsequent watershed, resulting in (i) a particle–discrete data set for quantitative anal-
ysis. In comparison (A) a machine learning strategy with (B) feature selection, (C) learning
algorithm and (D) subsequent classification result after additional application of fill–holes
algorithm.



6 Correlative Tomography

Correlative tomography mainly concerns a correlation of measurement results of the
same and/or other measurement methods within one or across several size scales63. 63 Note that correlative

tomography sometimes
also refers a change of the
sample over time, called
time–laps tomography or
4D tomography with time
as the 4th dimension. One
example here is given
by Paz-Garcia et al. who
investigate microstructural
changes in electrode mate-
rial within the charge cycle
of a Li–ion battery [158].
The correlation of the
measurement volume
over time is essential to
track changes and perform
quantitative analysis. This
kind of correlative approach
should not be of further
concern here.

Reviewing the recent literature, a possible categorisation can be made as follows:

1. A scouting approach, where the correlation is used for scale bridging. The in-
termediate measurement steps are only a tool. Just the result of the highest
magnification is of interest. This approach is used in Papers A, C and also by
Morales et al. [159]. A short introduction is given in Sec. 6.1.

2. A multiscale approach, where correlating is done mainly with the aim of con-
necting multiple scales of the same measurement method. Here, two or more
scales are of interest, not only the highest magnification. This approach is used
in Paper D and also by Burnett et al. [160], see also Sec. 6.2.

3. A multidisciplinary approach, where the main focus is on the connection of other
measurement methods, supporting and validating the actual measurement
result, and, more interesting here, to provide additional information, which
was not accessible via one method alone. This approach is used by Cnudde
et al. [161] and Furat et al. [9]. A short introduction is given in Sec. 6.3.

Complex characterization tasks require a mixture of these approaches [162]. Ide-
ally, the full range of possibilities would be used in every tomographic analysis, but
this is not feasible for a practical workflow due to monetary and time constraints
and sometimes it would only be of academic interest. Important in this context is
the sample preparation strategy described in Sec. 4.1. If the sample volume can be
reduced between the steps, like it is realized in Paper D, acquisition time can be
significantly optimized, or, as in the case of nano–tomography, this is what makes a
measurement even possible at all.

The principle tools for the correlation procedure are basically known from 2D
imaging [162] where it is called digital image correlation (DIC). One example is opti-
cal microscopy where DIC is used to find a ROI for SEM analysis. The extension to
3D is called digital volume correlation (DVC). Here, an example is the usage of the
XRM to find the ROI for a TEM analysis [159]. In this case, the new workflow is a
significant improvement over the established method, which would require up to
20 iteration cycles of manual cutting despite careful alignment for high–resolution
TEM measurement. The method is also applicable to generate displacement fields
in structures, which are, for example, captured before and after a defined load on
porous structures [163], or compressed particle beds [164].

The following examples show that the three different categories cannot be clearly
distinguished from each other. The decisive factor is the objective of the measure-
ment. The more clearly this is defined, the more likely it is that unnecessary mea-
surement time can be saved. For example, the tomograms in the following section
could be imaged with the same high resolution, but if the objective is not defined,
only an unnecessarily large amount of data with be generated here, the potential of
which will not be used. Follow–up measurements are the better alternative here.
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6.1 Scouting Approach

As already explained in the previous sections, there is a fixed relationship between
the FOV and the achievable voxel resolution, which is given by the number of avail-
able pixels on the detector, minimized by additional binning if necessary. If scanning
times are to be minimized and artefacts caused by ROI tomography are to be avoided,
the size of the sample must be adapted, see Sec. 3.3.5 and Sec. 4.1 respectively. The
higher the resolution becomes, the smaller is the FOV and thus the sample volume.
In practice, the adaptation of the sample size is not possible in every case. Some-
times samples have a given size and destruction should be avoided because they
will be used in other analysis methods or in cyclically in repeated tests like it is
shown in the fracture analysis example in Appendix 10.1, where the sample is used
between the scans to perform an ultra sonic fatigue test (USFT). Another example is
given in Fig. 6.1, where relatively large fibres from a filtration experiment had to be
embedded to avoid motion artefacts (see Sec. 3.4.6).

a

b

c

Figure 6.1: Analysis of aluminium oxide fibres from a filtration process with the goal of locating fil-
tered particles loosely attached to the fibre surface. (a) First scan with lowest magnification,
followed by (b) the next zoom step with higher magnification, resulting in (c) a high res-
olution scan. All three scans are illustrated with a top view (left), two corresponding side
views (middle) and a 3D visualization (right). Note that the pre–scans used for scouting
can be captured with very less projections, captured very quickly with bad quality but
showing sufficient details to re–locate the next scan step.

But the embedding had to be done very carefully with minimal mechanical im-
pact, as particles had been deposited on the fibres and it was essential to prevent
them from falling off. On the one hand the small diameter (approx. 10 µm) makes
single fibres invisible in the projection image with lowest magnification. Highest
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magnification, on the other hand, makes alignment for scanning the same fibre
within the very small FOV nearly impossible. So, a low resolution scan with the 0.4x
objective was performed, capturing only 201 projection images in a very short time,
see Fig. 6.1-a64. With the new coordinates, a new scan with the 4x objective was 64 This means that in this

case, no consideration is
given to the lower limit
of the photon counts either.
The image is therefore very
noisy, but after contrast max-
imisation, the structures nec-
essary for finding the coordi-
nates can still be recognised
in the tomogram.

performed with the same goal, see Fig. 6.1-b. The last scan with the highest mag-
nification, see Fig. 6.1-c, here a 40x objective, was then performed with a sufficient
number of projection images (according to Eq. 3.2), which was in this case 1601.
However, since the focus here is on finding a partial section, the intermediate steps
are deliberately driven to the limit so that a meaningful correlative analysis is no
longer possible.

6.2 Multiscale Approach

In the field of tomographic particle characterization discussed here, there are two
main tasks that require an analysis method over multiple scales. First is to be able to
analyse two (or more) characteristics, like a disperse particle collective with particle
fractions on different orders of magnitude. This is done in Paper D with a mixture
of fibres, several 100 µm in length, together with spherical particles in the range
below 10 µm in diameter. When adapting the FOV to capture the fibre length, the
voxel size would be reduced in such a way that the spherical system could only
be partially mapped, the fines would be much below the voxel size. In contrast, a
high resolution scan of the spherical fines not reveal the longest dimension of the
fibres. Only by combining two magnification steps, the characterization of the full
system is possible. Another example is given in Fig. 6.2-a, where a low–resolution
scan from the Zeiss Xradia 510 Versa, which is used in this thesis, is combined with
a scan of higher resolution from the same and from another micro–CT65. 65 The second device has no

additional magnifying optic,
so it is not an X–ray micro-
scope (XRM).

a

Side

Top

Side

b

Hg-Droplet
Substrate
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Crack

Top

100 µm

Figure 6.2: Examples for (a) multiscale approach capturing a mercury droplet on a substrate to investi-
gate the contact angle distribution in 3D, here scans from different devices at two different
energies where combined. Another example (b) for the multidisciplinary approach show-
ing two correlated measurements before and after USFT. Here, scans where supplemented
with later SEM analysis of polished sections [6]. Note that the scale bars are all referring to
a length of 100 µm.

Note that only by using two different energies, the very strongly X-ray absorb-
ing mercury droplet could be imaged together with the much weaker absorbing
aluminium oxide substrate. The dynamic range of a single measurement would
not have been sufficient (see also Sec. 5.1.4). The example is discussed in detail in
Appendix 10.2.
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The second task is one (or more) disperse particle collective(s) of the same order of
magnitude with different characteristics to be analysed. These characteristics are for
example particle size, that can be scanned with low–resolution, and particle shape,
that can be scanned with high–resolution to image fine details.

6.3 Multidisciplinary Approach

Since X–ray attenuation as described in Sec. 3.2 and Sec. 3.3 is able to perform
structural analyses non–destructively, but is only suitable to a limited extent for de-
scribing samples quantitatively in terms of their composition, additional analytical
methods are required that have to be correlated with tomography measurements.

As already discussed in Sec. 4.1, avoiding sample motion, except for rotation,
is even more essential when correlating volumes of different resolution. Parlanti
et al. [98] states that it is at least beneficial to align the sample as accurately as
possible and maintain the alignment for all measurement methods to be correlated.
Basically trivial, but an important consideration for the sample preparation66. When 66 An important questions

is how to mark the sam-
ple’s initial relative position
when it is necessary to un-
mount it for experiments be-
tween two or multiple mea-
surements.

interconnecting measuring systems from a single manufacturer, this can be realised
via corresponding hardware and software interfaces [165]. In any case, it is essential
to know the exact distance to the surface in order to correlate, for example, 2D
methods that are done via manual cuts. This was realized with overview scans in
Paper D to identify a proper FOV for high resolution nano–CT scans.

Here, the quality of the digital volume correlation (DVC) strongly depends on
the image quality and the used algorithms [102]. DVC can be performed discretely
following distinct features like particles or continuously tracking the movement of
random structures in the material [164, 103]67. Here, the minimum size of a repre- 67 Features can be highly X–

ray attenuating contamina-
tions, intersecting fibres in
the particle system of Pa-
per D or entrapped air voids
in case of the epoxy embed-
ding method from Paper C,
which is applied in the on-
going studies, presented in
Sec. 8

sentative volume element is related to the material and the property of interest [166].
All captured feature movements between different tomograms are summarized as
displacement field. Here, the resolution has to be much better than the voxel size to
get reasonable information of shift errors [163].

Note that this section is deliberately kept very short as this approach is the subject
of current research but is not included in the own publications referenced here.
Nonetheless, in Sec. 8 Outlook on Further Research Activities, the current status
of the study on the correlative material analysis of multiphase particle systems is
described. Additionally, Fig. 6.2-b shows another example of cast alumina samples
before and after ultra sonic fatigue test (USFT) to identify cracks within the matrix,
their propagation being a function of the material phases [14, 6]. This example is
discussed in detail in Appendix 10.1.

Both examples are connected to the Collaborative Research Center 920, which is
dealing with multi–functional filters for metal melt filtration. Example 1 focuses
on the breakage behaviour of cast alumina samples after USFT. Note that this ex-
ample is not related to particle analysis. In this case the correlation of the volumes
would become even more complicated, especially if the particle system does not in-
clude special features, that can serve as alignment markers when matching different
volumes.
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Data is generated, stored, filtered, accounted for and aggregated. Raw data is in-
creasingly abstracted, an essential process, especially with very large amounts of
data, to be able to capture condensed information. In order to produce scientifi-
cally reproducible results, each of these intermediate data–modifying steps must be
stored as metadata together with the referring measurement data. Fig. 7.1 shows a
tomographic imaging workflow generating data on different aggregation levels.
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Figure 7.1: All (a) data generating steps within a typical tomographic data acquisition workflow used
in this thesis. All these steps are generating (b) data and (c) metadata, which is used for
the final (d) multidimensional correlation. (e) Assessing data quality is a crucial step here.
Note that on the right side the examples from the previous sections are visualizing the data
representations, with (f) a mounted particle sample, (g) the reconstructed tomographic
dataset, (h) a classified slice, (i) extracted particle–discrete data, offering the possibility to
perform a multidimensional correlation, e.g. with (j) KDE, or (k) Copula.

The following part gives insight into the data processing methods used in this
thesis with focus on ensuring data quality, followed by the treatment of particle–
discrete datasets, stored within the PARROT database [5]. Note that this section does
not claim to be a sufficiently detailed introduction to the topic of a reasonable data
processing strategy, including data collection, data assessment and data cleaning,
and finally model estimation, interpretation, and conclusion—the so–called data
mining68. The interested reader is referred to [168, 169]. 68 A more general ap-

proach is given by the cross–
industry standard process
for data mining (CRISP–
DM) [167], which will not be
of further concern here.
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7.1 Data Quality

The basis of a well–founded data analysis is reliable raw measurement data. It is not
important that the data is free of errors from the very beginning, but that the overall
scatter can be explained as far as possible from the documented metadata. For
example, defective pixels on the detector or, as explained in Sec. 3.4, the fluctuation
of the electron excitation bulb on the target inevitably lead to blurring in the system.
Events which are recorded in log files but are only stored and are not included in
any automatic or manual evaluation can be problematic.

Most modern measurement devices are equipped with an automatic capturing
of the current status of hardware and software components, usually called logging.
These log files are stored on the system and in most cases are only read out when
an acute error occurs. This is the most obvious application but often leaves out a
much more important aspect. The real potential of such log files is the statistical
analysis of the numerous entries. To do this, the log file has to be passed through
line by line and separated into logical units, in most cases strings, which is called
parsing. These strings can be grouped afterwards to be analysed statistically. The
referring parsing tool was programmed in C# within the .NET framework, the re-
lated graphical user interface and the code–snippets can be found in Appendix 10.6.
Doing such an analysis in regular intervals, enables one to look for developments
that may cause problems in the future. This forward–thinking method is referred to
as predictive maintenance. Certainly, the little program is only the first step. Predictive
maintenance is not just the collection and evaluation of data, but involves extensive
analysis and, above all, the creation of prediction models, some of which are quite
complex.

7.2 Data Availability

Storing the data in a reasonable way is a crucial step. Storing all of the data is in
most cases possible but not necessarily the best solution. Careful data management
is very important but often neglected due to the high time effort. Besides the local
data management, a global perspective is increasingly important for interconnected
scientific work. Providing the data to other working groups is essential to solve
todays challenges in an efficient and reasonable way. The next short sections can-
not cover this topic in total but will provide some information on how the data is
handled in the referring publications.

7.2.1 Tomographic Datasets

The tomographic datasets consist of a raw datafile in a Zeiss proprietary format
(32 bit, *.txrm), which holds all relevant metadata. These files are stored on a local
backup-secured filesystem. Because this datatype is not easily accessible by third
party software, the reconstructed image stack (16 bit, *.tif ) together with relevant
metadata is uploaded to an online open access repository and archive of the TU
Dresden and TU Bergakademie Freiberg, called OpARA. Here, the related datasets
get a digital object identifier (DOI) and can so be referenced within the related pub-
lications and can also be used as a direct database link, as it is realized within the
particle database PARROT, see Paper E, which will be discussed in the following
section.
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7.2.2 Particle Database

The focus of this thesis is the generation of particle–discrete tomographic data. Stor-
ing this data within an open access database allows the provision of filtered datasets
worldwide. Not only for correlating the data, but also to develop and evaluate own
image processing workflows and use the 3D datasets as a starting point for process
modelling purposes, to name just one possible example here. Sharing such datasets
gives other researchers the chance to reuse the data without the need for appropriate
measurement equipment and resources.

The structure of this database in pilot stage is described in detail in Paper E. Six
particle systems with relevant measures and 3D representations are stored within
this database. Additionally, there are three use cases presented which show possi-
ble applications of particle–discrete datasets, from 3D particle analysis, statistical
analysis and multivariate parametric modelling, and numerical process modelling.
Based on a relational model, the database can easily be supplemented with addi-
tional information by inserting new columns in existing tables, or by creating new
tables, with proper primary keys for joining. Note that with this concept it is also
possible to supplement data to existing datasets or to link other databases as well.

Like the DOI from the OpARA system is used as a unique identifier for the to-
mographic dataset, also other unique keys could easily be utilized. The main work
lies in defining and maintaining the interfaces. Depending on the type, number and
amount of measurement data, this can take a lot of time. For this reason, among
others, the number of data sets and parameters was deliberately limited in the pilot
phase. The interfaces are based on manually created and automatically exported
text files. If the structure of these interface files is retained, they can be converted
to automatic filling in a later phase. Further details on implementation, scalabil-
ity, maintenance and performance can be found in Paper E and the corresponding
supplementary material.

Note that, with the current database design, it would also be possible to include
single high–resolution particle information. Fig. 7.2 shows reconstructed sections of
three different dolomite particles, which are embedded in epoxy resin.

100 µm

Figure 7.2: Exemplary sections from three different dolomite particles embedded in epoxy resin with
various internal structures. Note that the particle on the left is located at the phase bound-
ary to the air, which is clearly marked by a line.

Considering that these are particles of the same type of rock69, the potential in 69 Dolomite is a carbon-
ate rock mainly consisting of
CaMg (CO3)2.terms of revealing the internal structure becomes apparent. For example, the pro-

portion of different phases, the crack or pore size distribution could be of interest.
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As already shown in Fig. 1.2 of the Outline Sec. 1, the next challenge is the extension
of the methodology towards multiphase particle samples in three dimensions. Note
that the following workflow combines state–of–the–art measuring devices and is
thus most likely a reasonable approach for laboratories with already existing equip-
ment. Another approach is to build new equipment. This can be done either by
using established methods, like it is done by Boone et al. [170] with a combination
of CT and X–ray fluorescence (XRF), or by using new techniques, like it is done by
Godinho et al. [171] with a combination of a polychromatic X–ray source with a
multichannel detector70, a so–called spectral CT. These other approaches should be 70 With a multichannel de-

tector it is possible to de-
termine the X–ray photon
energy within fixed bins,
for example 128 [171]. The
analysis of the resulting en-
ergy spectrum allows the
identification of transmis-
sion changes at defined en-
ergies, which are specific of
each element.

not of further concern here.
The adaption of the wax sample preparation method, which is presented in Pa-

per A, by using a combination of epoxy resin with nano graphite spacer particles,
see Paper C, makes the application of the high–energy particle radiation required
for elemental analysis possible at all. Fig. 8.1 shows an exemplary workflow.

Epoxy-PasteSyringe ExtractionCylinderBar
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Figure 8.1: X–ray tomographic workflow for element–specific analysis with (a) adapted sample prepa-
ration method [3] generating (b) an epoxy paste that (c) can be extracted with a syringe
to (d) form a cylinder sample. (e) Cut to a bar, the sample can (f) be captured in high–
resolution mode with the micro–CT. A (g) laser mill is used to generate a sample cylinder
suitable for (h) nano–CT measurement and (i) correlated measurements on sections in
different heights with the FIB-SEM, which are able to (j) identify different mineral phases,
indicated by different colours, (k) to map the whole 3D volume. Note that this figure is
based on a presentation at ECCE/ECAB 2021 [11] and M&M 2021 [12]

Here, a mixture of two mineralogical phases, Saxolite (CaCO3) and Talc (magnesia
derivates, such as Dolomite, Magnesite and Talcum), with comparable size and den-
sity, are classified by a combination of a deflector wheel classifier and an electrostatic
separator using the different triboelectric charging properties of the two materials.
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Since the X–ray absorption contrast, both of the polychromatic radiation of the
micro–CT and of the nearly monochromatic radiation of the nano–CT71, as described 71 A detailed introduction

to the specifics of nano–CT
imaging are beyond the
scope of this work. Some
details can be found in
the materials and methods
section of Paper D and its
supplementary, where the
measurement setups of
both, micro–CT and nano–
CT, are compared with each
other. In this study a Zeiss
Xradia 810 Ultra was used.
The interested reader is also
referred to a summary of
nano–CT technology by
Withers [172].

in Sec. 3.2 and Sec. 3.3, cannot be used directly for material identification. The multi–
scale workflow presented in Paper D has to be supplemented by (correlated with) a
destructive measurement technique, in this example focused ion beam (FIB), which
is able to slice the sample very precisely to create a defined surface for techniques
for elemental identification. In other words, this technique is an extension of the 2D
MLA, which is working on polished sections, into high–resolution 3D.

In the FIB process, ions are accelerated in a defined manner, directed with high
kinetic energy onto a surface and lead to local ablation of the sample. The SEM,
which is connected and works in parallel, provides the image data for the respective
section plane. Additional detectors, such as electron backscatter diffraction (EBSD)
and energy–dispersive X–ray spectroscopy (EDXS), can be used for the acquisition of
local chemical information. Where classical etching and sputtering methods remove
material in the micrometer range, the FIB delivers much more precise results and
is able to work in the range of several atomic layers. The distances between the
cutting planes are in the range of the local two–dimensional resolution and thus
enable a vertical voxel dimension of 100 nm to 10 nm. However, due to the long scan
time of a high–resolution SEM image, the creation of a larger 3D volume, a stack of
a multiple of such images, is not practical and has to be replaced by the analysis
of representative sections as it has already been published for a combination of
micro–CT and representative sections from MLA by Furat et al. [9]. Nonetheless, FIB
nano tomography not only makes element identification possible, but also closes
the gap between nano–CT and the atomic resolution of the transmission electron
microscopy (TEM) [173, 174].

Before applying the high–resolution measurements, the sample diameter, the
same size as in Paper D, has to be further reduced, now with a laser mill72 to a cylin- 72 Laser milling, also

called laser ablation, uses
a well–defined monochro-
matic laser beam for direct
layer–by–layer material
removal that is performed
by a CNC machine [175].
Due to the laser beam’s
shape, the resulting cylinder
is slightly conical, which
is no problem for the
measurement principles
used here.

der, see Fig. 8.1-g, which, as discussed in Sec. 4.1, is an ideal shape for the nano–CT,
see Fig. 8.1-h. After the 3D capturing, the focused ion beam (FIB) is used to perform
a vertical cut that allows the identification of the height for a suitable horizontal
cut, see Fig. 8.1-i, for a following scanning electron microscopy (SEM) analysis [176].
After the measurement, the additional element–specific data has to be correlated
with the existing data set to create a 3D volume of combined particle–discrete and
mineral–discrete73 information. In the presented workflow, this is realized by us-

73 Note that this informa-
tion can also be interpreted
as an extension of the prop-
erty vector of the particle-
discrete information.

ing parametric copulas, see also Sec. 2.3 and the already published work by Furat
et al. [68].

First results of this ongoing work were already presented at the ECCE/ECAB 2021–
13th European Congress of Chemical Engineering and 6th European Congress of Applied
Biotechnology by Ditscherlein et al. [11] and at Microscopy & Microanalysis 2021 by
Englisch et al. [12] and will be published soon.

As the discussion of this thesis in combination with the referenced publications
has hopefully shown, X–ray computed tomography offers an immense potential to
complement existing established measurement methods of particle characterisation
or makes some approaches possible in the first place. Due to the constant further
development of hardware, especially X–ray sources and detector sensors, and soft-
ware, especially reconstruction algorithms, we are certainly only at the beginning
here.
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9.2 Overview

Again, see Fig. 9.1 as a contextual reference for the work as a whole.

see Chapter 8
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New application fields of particle technology, e.g. coatings, pharmaceuticals or electronic components require
more and more highly defined particles in the lower micrometer range. In this case the particle size distribution
(PSD) is no longer sufficient to define the specifications alone. The particle system has to be described by further
distributed properties, which are for instance particle shape or particle composition. Tomographic particle char-
acterization is one keymethodology to provide the data, required to quantify these specifications. The tomogram
of a representative particle sample contains information on the size and shape of each individual particle. The
data of X-ray absorption furthermore gives hints about the material properties and structure of intergrown or
composite structures. One central challenge in the tomography of a particle sample is the segmentation of the
image data.When the particles in the sample are too close to each other, the algorithm is not able to separate in-
dividuals. On the other hand, oversegmentation can occur, when a particle is separated into two ormore individ-
uals during the image processing. Therefore, the physical sample preparation, which keeps the particles at a
defined distance, strongly facilitates any automated segmentation.
The established techniques known from SEM, TEM or automated mineralogy (MLA) cannot be transferred to
X-ray microtomography (XMT), because they only have to provide a representative 2D-measuring plane. The
3D-sample preparation introduced here is able to provide a homogeneous particle sample immobilized within
a matrix material with low X-ray absorption. In the sample, all particles have a minimum distance which
amounts to more than a defined minimum multitude of the voxel size. The carrier matrix is a wax structure,
that is shock frozen within a small polymeric tube with inner diameter from 0.5 mm to 2 mm. This corresponds
to the requested sample size for the tomographic measurements (X-ray microscopy system Zeiss VERSA 510),
which is 1024 times voxel size (≈0.5 μm to 2 μm), allowing multi-dimensional characterization of particles
from 5 μm to 50 μm in size and shape.

© 2019 Elsevier B.V. All rights reserved.
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Sample preparation
X-ray microtomography
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XRM

1. Introduction

1.1. Particle characterization

Distributed particle properties are of great interest when describing
processes from the micro- to the macro-scale. The easiest way is to
spread particles on an object carrier and performing a two-
dimensional (2D) analysis with optical or, if higher resolutions are

needed, electronmicroscopy [1,2].When sections of particulate systems
need to be analysed, particles are embedded in a matrix that can be
polished to a defined roughness that is suitable for the analysis method
(e.g. coupledmethods such as SEM-EDS or SEM-EBSD [3,4]). To prevent
stereological errors when deducing three-dimensional (3D) character-
istics from 2D measurements, sectioning methods like the focused ion
beam (FIB) combined with scanning electron microscopy (SEM) allow
quasi-3D-characterization — but with high effort and not for all mate-
rials. Tomography, that comprises all imagingmethods that slice an ob-
ject to reveal its interior structure, gives a much better statistic in terms
of particle number. A good summary of the 3D characterization of parti-
cle shapes is given by Lin andMiller [5]. This studywill focus on size dis-
tribution analysis only.

1.2. Sampling theory

Gy [6] described the sampling of particulate material as a combina-
tion of sample extraction and sample preparation — both generating

Powder Technology 360 (2020) 989–997

Abbreviation: B-D, Binomial distribution; EBSD, Electron backscatter diffraction (SEM-
EBSD); EC, Elementary cell; EDS, Energy dispersive spectroscopy (SEM-EDS); EP,
Extraction point (sampling); ESD, Equivalent spherical diameter; FBP, Filtered back
projection (algorithm); FIB, Focused ion beam; FOV, Field of view; K-S, Kolmogorov-
Smirnov (statistics); LOESS, Locally weighted scatterplot smoothing; MLA, Mineral libera-
tion analysis; PSD, Particle size distribution; SEM, Scanning electron microscopy; TEH,
Tube extraction height (sampling); TEM, Transmission electron microscopy; XMT, X-ray
microtomography; XRM, X-ray microscope.
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their specific errors. Thismodelwas developed formixtures of valuables
in waste material and is empirically described by tabulated factors de-
pending on mineralogical composition, liberation, particle size and
shape.

Hutschenreiter [7,8] developed a samplingmodel especially adapted
for the analysis of particle size distributions (PSD). The basis is a statis-
tical urnmodel. An important requirement is that every bin of the PSD is
representative, proportional to its mass fraction in the basic population.
Especially the largest ones, because of their small number in the sam-
pled volume.

A more practical approach, especially for micron-sized particle sys-
tems, is given by Koglin et al. [9] and Vigneau et al. [10], who calculate
a minimum particle number based on statistical models.

1.3. Sample preparation

The preparationmethod for particulate samples in XMT-analysis de-
pends on the particle size and the parameters of interest. The easiest
case is a packed particle bed where, however, particles are not
prevented from moving while scanning. Also direct particle-particle
contact can cause problems in particle software segmentation. To fix
the particles, an embedding matrix is used - in most cases epoxy resin,
because it is well machinable and transparent for optical analysis. A
good summary of miniaturized alternatives to conventional sample
preparation techniques for solid samples can be found in [11].

If the setting velocity of the particles is not negligible, segregation
leads to different compositions of vertical sections. While sedimenting,
particles get in direct contact as is the case in a packed bed. Both effects
can be problematic in software segmentation due to non-separated par-
ticles and different grey-scale histograms (Fig. 1-C/D). Below 50 μm,
strongly increased particle-particle interactions can cause agglomera-
tion of particles which also influences the quality of particle segmenta-
tion (with/without agglomerates - Fig. 1-E/F).

To prevent sedimentation, the hardening time of the epoxy resin
needs to be significantly reduced. This can be achieved by replacing it
with wax. Waxes are used for tissue preparation in optical microscopy
because of its histological compatibility. A good summary of existing
methods for biological sample preparation and their applications in
X-raymicrotomography is given by Strotton et al. [12]. They are charac-
terized bymelting points around 60°C, negligible shrinkagewhile hard-
ening, good cutting properties and low X-ray attenuation coefficients
(comparable to resin). They are also suitable for volume samples. In
3D particle analysis, wax embedding methods for particulate material
are rarely mentioned. One example is given by Van Meel et al. [13].

1.4. X-ray microtomography (XMT)

Particle-dependent distributions (e.g. size, shape) give insight in
howmechanical processes work and how they are connected to related
micro-processes. Only in three dimensions, a reliable description of dis-
tributed volumetric particle properties is made possible [5]. This

without unwanted uncertainties caused by stereologically corrected
2D analysis methods and with the possibility to quantitatively investi-
gate particle collectives [14] and their structural characteristics [15] or
the inverse pore network between the particles [16].

In conventional radiological 2D imaging, all attenuation coefficients
along one line through the sample volume form one sum signal. This
equals one specific grey value of overlapping structures, which are lo-
cated in succession in the beam path. So they cannot be analysed sepa-
rately. By scanning a specific field of view (FOV) of the sample under
different angles, a 3D-volume can be created by applying a mathemati-
cal reconstruction algorithm. Extracted sections from this volume are no
longer a sum signal but a real volume-slice with grey values propor-
tional to the attenuation coefficients of the material.

State-of-the-art scanners for micro-scale analysis are designed with
cone-beam geometry and flat-panel detectors in combination with a
magnifying optic (sometimes called an X-ray microscope). A detailed
description of the evolutionary steps can be found in [17]. Besides the
application inmaterial science [18], there aremultiple implementations
in the field of process engineering - regarded by the 4 typical macro-
processes:

1) Comminution: liberation analysis [19], particle breakage analysis in
grinding processes [20], grain boundary fracture [21] and random
fracture [22] analysis

2) Agglomeration: sintering of rawmaterial in iron ore processing [23]
and of nano-particles in pharmacy [24]

3) Separation: analysis of exposed grain surface area in flotation pro-
cesses [25], pore network analysis [26,27]

4) Mixing: physical separation processes in silo storages [28] and 3D
particle bed characterization [29]

In-situ measurements become more and more interesting in all ap-
plication fields due to decreasing scan-times and increasing computa-
tional power. Analyses that were formally only possible in
synchrotron experiments become now available for lab-based X-ray
systems. A very good summary of quantitative X-ray tomography appli-
cations is given by Maire and Withers [30].

2. Material and methods

2.1. Particle system

As idealized sample, a spherical soda-lime glass-particle system
(SiLibeads, type S from Sigmund Lindner) with particle sizes below 50
μm was chosen (72.3% SiO2, 13.3% Na2O, 8.9% CaO, 4.0% MgO, 1.5%
others). To have a defined range in the PSD, the material (upper
specification limit 50 μm) was classified with a separator type ALPINE
Multi-Plex 100MZR classifier above 5 μmparticle size. The PSDwas de-
terminedwith laser diffraction, Beckman Coulter LS13320 XR, with dry-
and wet-dispersion unit—with and without pre-dispersion in an ultra-
sonic bath (240 W). The results of the repeated determination can be
seen in Table 1.

In Fig. 2 one can see some examples of irregular shaped particles,
which are present in the material. These particles account for less thanA

D

CB E

F

G

Fig. 1. Samples embedded in resin (A, G), freeparticle that frozewhile resinhardening (B);
Horizontal sections with small (C) and large (D) particles due to sedimentation; Sections
with agglomerated (E) and free (F) particles of an embedded sample without
sedimentation.

Table 1
Results of the laser-diffractionmeasurement given in characteristic quantiles for three dif-
ferent measurement modes and two replicates each.

Method Run x10/μm x50/μm x90/μm

Dry 1 22.8 37.5 55.4
2 22.9 37.0 54.5

Wet 1 23.1 38.1 57.8
2 23.0 38.1 57.7

Wet, 1 22.8 38.2 58.7
Dispersed 2 22.8 38.1 58.5
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b5% of the sample mass. Thus, using ESD as descriptor for particle size
seems to be reasonable.

2.2. Representative sample

The model approach of Gy and Hutschenreiter has to be supple-
mented, because In case of tomographic imaging it is sometimes not
possible to get all sampled particles into the FOV and thus in the mea-
sured volume. A second sampling step has to be taken into account,
which leads to the question howmany particles are needed to get a rep-
resentative sample — presumed that there are is no segregation.

Vigneau et al. [10] proposed the Kolmogorov-Smirnov (K-S) test sta-
tistics [31] (1-dimensional) to determine the required number of parti-
cles to reach a certain confidence interval. Mathematical derivation and
proof can be found in [32,33]. For a large number of particles n (n N 40)
and for a specific level of significance α (0 b α b 0.2), the variation ±

δα(n) of the number based distribution function Q0 (confidence band)
is given by:

δα nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1
2n

ln
α
2

� �r
ð1Þ

With this, one can calculate the needed number of particles n at a given
confidence band width. Significance α is the probability that the deter-
mined Q0 sticks out of the confidence band. With decreasing α the con-
fidence band is widened up. To compensate for, n has to grow. Because
the K-S test statistics is based on the assumption that every particle has
the sameweight in the overall distribution, Eq. (1) is only valid for num-
ber based distribution Q0.

Koglin et al. [9] proposed a model which is based on the binomial
distribution (B-D). The resulting equation depends on the t-value

Fig. 2. Extraordinary shapes in spherical SiO2-particle fraction below 50 characterized with SEM: (A) hollow and (B) massive spheres including small spheres, (C) doughnut-shaped
particle, (D) sphere with small surface-holes, (E) irregular and (F) regular broken spheres, (G) sharp-edged contamination, (H,I) irregular-shaped particles with sintered satellites.
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(student-t distribution) for a given probability P to avoidmaking a mis-
take:

f P nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

n
� Q0 1−Q0ð Þ

s
ð2Þ

Q0 is practically chosen between 0.2 and 0.8 (0.5 for selecting the me-
dian as characteristic value for the given distribution).

2.3. Sample preparation

The initial sample is divided into sub-samples of 640mg using rotat-
ing sample splitters. Two sub-samples were selected for concentrations
of 10% and three for 15% (combined as analysis sample). The sample
was extracted with a self-designed computer-controlled syringe. A
detailed description can be found in MethodX.

A histological wax (PHC9061, PothHille) with a melting point be-
tween 59°C and 61°C was used as embedding matrix. The suspension
of dispersed particles and wax was then sampled using a pre-heated
plastic tube of 2 mm inner diameter. Pre-heating is required to prevent
uncontrolled solidification of the wax before sampling is finished. This
will be discussed in the results section.

2.3.1. Minimum concentration estimation
With the estimations from Koglin et al. and Vigneau et al. regarding

theminimum particle number for a representative sample, one can cal-
culate the minimum particle concentration cmin by relating the volume
VParticle of all particles nParticle to the volume of the sample cylinder

VCylinder:

cmin ¼ VParticle

VCylinder
¼

nParticle �
4
3
π � x3

nStitch � π dC
2

� �2
� hC

ð3Þ

with particle size x, sample cylinder diameter dC and height hC. Stitching
offers the possibility to virtually combine multiple scans to extend the
observed volume by nStitch.

2.3.2. Maximum concentration estimation
To estimate the maximum particle concentration under ideal condi-

tions (no agglomeration/sedimentation), one can define a cube with
side length a in which a particle with size x is centred (Fig. 3-A). Two
particles are separated by a number of voxels nVoxel, sep with voxel size
dVx. The concentration of this model “elementary cell” (EC) is then
given by:

c ¼ VParticle

VCube
¼

4
3
π � x

2

� �
a3

ð4Þ

The number of separating voxels nVoxel, sep can be calculated with:

nVoxel;sep ¼
2 � a

2
−

x
2

� �
dVx

ð5Þ

Rearranging Eq. (5) to the cube side length a and applying this to Eq.
(4), one can calculate themaximumparticle concentration cmaxwhich is

x a

A B

x

V
ℎ

Fig. 3. Minimum concentration estimation: particle inside surrounding matrix cylinder (equivalent to sample geometry) with diameter dC and height hC (A), maximum concentration
estimation: two particles with diameter x in the centre of the surrounding matrix cubes (wax) with side length a and a specific number of separating voxels V with voxel size dVx (B).
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no longer dependent from the EC:

cmax ¼
4
3
π

x
2

� �3

nVoxel;sep � dVx þ x
� �3 ð6Þ

With given particle size (representative value) and sample volume, cmax

is only dependent on the user defined needed minimum voxel number
to separate particles from each other. Both estimations are summarized
in Fig. 4.

2.3.3. Aspiration speed
To prevent segregation effects, aspiration speed has to be much

higher than the stationary setting velocity of the particles. The required
dynamic viscosity was measured with Discovery Hybrid Rheometer
DHR 1 by TA Instruments at 70°C, 80°C and 90°C. The overall average
is 24 mPas. With the Stokes-equation one can calculate the setting ve-
locity of the largest particle (will sink the fastest) with diameter 50
μm–0.4 mms−1 at a Re-number of 7 × 10−4 that indicates Stokes flow.
To prevent segregation (stationary setting velocity of smallest particle
diameter 5 μm → 0.004 mms−1, factor 100 slower) and sedimentation
effects (tube not perfectly vertical), one has to adjust the aspiration
speed much higher (with tube inner diameter of 2 mm, aspiration
height of 160 mm and aspiration time of 2 s → 80 mms−1).

2.3.4. Error estimation
Errors for sample splitting are (1) losses by emittingdust and loosing

fine fraction of the particulate sample that will influence the PSD,
(2) the entry of impurities caused by abrasion or dust which can influ-
ence the XMT-measurement due to high absorption coefficients (see
subsecction 1.4) and (3) forming of agglomerates that will alter the sys-
tem from the initial state. To prevent agglomeration, the sub-samples
where put in the stirred pre-melted wax very slowly. The rotation
speed was increased after adding new sub-samples starting from

400 min−1 to 1000 min−1. The goal is to suppress the formation of a
vortex that would significantly lower stirring efficiency.

2.4. XMT-measurement

The analysis was carried out with an XMT (Zeiss, type VERSA 510)
with a polychromatic X-ray source, a rotating tungsten target, a maxi-
mum acceleration voltage of 160 keV and a maximum power of 10 W.
Compared to a conventional X-ray micro-computed tomography
set-up, the optical system increases magnification by factor of 10. Fig.
5-A shows the principle of the 2-step-magnification. The minimum
voxel size of the system is 0.3 μm. One voxel is a volume pixel element
in the final tomographic reconstruction with the same edge length in x,
y (area - normal pixel/2D) and z (depth - volume pixel/3D). The follow-
ing primary effects determine the practically attainable optical resolu-
tion of the system:

1) pixel-resolution of the CCD-sensor (2048 × 2048) Px,
2) optical magnification (0.4×, 4×, 20×, 40×),
3) mechanical stability of the system and
4) thermal stability of the system and the sample.

Secondary effects due to system resolution are for example theX-ray
tube itself [34], the cone-beam and the scintillator [35] [36]. Especially
when measuring at high resolutions, the influence of these effects can
increase rapidly. Further information regarding the technology of the
XMT and its fields of application are summarized in [30,37]. Further in-
formation regarding the physicalmechanisms and X-ray physics in gen-
eral can be found in [17,38]. A collection of known artefacts in X-ray
tomographic analysis is summarized by Boas and Fleischmann [35]
and by Davis and Elliott [36]. Table 2 shows all relevant scanning
parameters.

2.5. Volume reconstruction

The reconstruction was done with the Scout&Scan Reconstructor
Version 11.1.8043 from Zeiss with the standard filtered back projection

X-ray source

Aperture

Sample Scintillator Optic CCD camera

a b

BA
Geometrical
magnification

Optical
magnification C D

Fig. 5. Principle of CT-measurement with two step magnification (A), mounted sample stack between source and detector (B), cutted tube with positions top, middle and bottom
(C) probed tube part from fluid-extraction-unit setup (D).

Table 2
Parameters for measurement (Meas.) and subsequent reconstruction (Recon.)

Parameter Value

Meas. Sample size/mm 2
Field of View (FOV)/mm 2
Acceleration voltage/keV 80
Electrical power/W 7
Source filter (Zeiss standard) LE4
Exposure time/s 1
Optical magnification 4
Number projections 2001
Angle range/deg 360
Voxel size/μm 2
Binning 2

Recon. Algorithm FBP
Smoothing (Gauß) 0.7
Beam Hardening Correction 0.05

Table 3
Image-processing workflow in FIJI (ImageJ 1.51w) with used parameters and references.

Method Parameter Reference

2D pre-processing Enhance Contrast s ∣ 0.35
Unsharp Mask r ∣ 5, m ∣ 0.4
Non-loc. M. Denoising s ∣ 15, sf ∣ 1, a [42]
8 bit conversion –
Auto Local Threshold Bernsen, r ∣ 15 [43]

p1 ∣ 40, p2 ∣ 0, w
Despeckle
Fill Holes

3D 3D Watershed Split s ∣ auto, r ∣ 2 [44]
3D Objects Counter [39]
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(FBP) algorithm. Reconstruction settings are summarized in Table 2.
Due to the absence of high attenuating phases, no beam-hardening
was found, except in case of sample contamination. Due to the cone-
beam artefact, 50 slices at the top and at the bottom where excluded
from the dataset before image post-processing. With regard to 995
slices in total these are approx. 10% of the full dataset.

2.6. Image processing

Image processing was done with FIJI (ImageJ 1.51w). All related pa-
rameters are listed in Table 3 (workflow from top to bottom). Due to the
cone-beam setup and resulting overall grey-scale differences, Auto
Local Threshold is essential for good segmentation results. Here the
threshold is computed for each pixel in a defined radius. So it ismore in-
dependent from grey-level variations and sticks more to the structure
(in this case particles). The parameters of the underlying algorithm (in
this case Bernsen) can vary depending on object size, contrast and
shape and have to be carefully selected for a given segmentation task.
Non-optimal parameter selection can lead to artefacts in thefinal binary
image that can make segmentation much more challenging.
Despeckling is used to reduce black pixels inside particles that would
lead to oversegmentation artefacts. Fig. 6 shows an example for
workflow results - (A) raw, (B) binarized and (C) segmented.

As shown in Fig. 2-A someparticles are hollow.When calculating the
equivalent spherical diameter (ESD) (see Subsection 2.7) this would
distort the outcome due to much lower particle-related voxel volumes.
The Fill Holes algorithm is one method to solve this issue by filling
closed lines with white pixels (related to particle).

2.7. Image analysis

Qualitatively, reconstructed sections themselves have a lot of valu-
able information. Quantitative analysis needs much more precise work
in acquisition (e.g. voxel-resolution → object surface), image
pre-processing (e.g. beam-hardening correction → artefacts), image
processing (e.g. oversegmentation) and in post-processing, especially
when developing macros for slice-per-slice operations (processing one
slice after another with the same sequence of image processing steps).

Due to the spherical shape of the particles, the equivalent spherical
diameter was chosen as representative measure for particle size. After
particle identification, ImageJ 3D Objects Counter [39] calculates the
voxel-volume for each particle (as sum of all particle-related voxels).
This volume, regarded as sphere, gives the corresponding diameter. To
determine the concentration of the particles in the wax matrix, an
ImageJ-macro steps through the slices and determines the ratio of
white (particle) and black (matrix) pixels.

3. Results and discussion

3.1. Sampling

To verify the influence of the tube extraction height (TEH) on the
PSD (selective aspiration), samples on top, middle and bottom position
- vertically centred - where extracted and combined to a sample stack
(see Fig. 5-C/B). The sample stack reduces scan time (warmup) and
minimizes variability between different scans.

Fig. 6. Reconstructed slices (A), after 2D pre-processing (B) and 3D segmentation (C) with corresponding detail enlargement.

Table 4
Aggregated results for the particle size distribution (average, standard deviation) from all
measurements; For experiments tube extraction height-validation (TEH) and extraction
point-validation (EP)with given target particle concentration and average number of par-
ticles N per experiment.

Quantile Avg/μm Stddev/μm

Exp. TEH EP TEH EP

Conc. 10% 15% 10% 10% 15% 10%

0.01 10.3 10.0 10.0 0.5 2.4 1.0
0.05 15.8 15.8 16.1 0.8 2.5 1.3
0.10 19.2 19.7 19.7 1.0 1.6 1.4
0.25 24.8 25.0 25.0 0.9 1.0 1.1
0.50 30.6 30.6 30.7 0.8 1.0 1.0
0.75 37.6 37.6 37.5 0.7 1.2 1.0
0.90 44.6 44.4 44.4 0.6 1.1 1.0
0.95 48.3 48.1 48.1 0.6 0.9 1.0
0.99 53.5 53.4 53.4 0.6 0.7 0.8

N (avg) 25,580 35,220 24,770

Temperature gradient

Tube
profile

Gravitational force

Tube
side view

a

b

a

b

Fig. 7. Results from first wax sample preparation tests; Vertically aggregated slices with 2
artefacts: (a) formation of a cylinder inside the sample tube due to temperature gradient,
(b) accumulation of particles on the bottom due to gravitational effects.
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To verify the influence of the extraction point (EP) in the sample ves-
sel, two different positions (close to the top/bottom) where investi-
gated. Equally to TEH, the tube was placed outside of the rotation
centre of the fluid to guarantee optimal mixing conditions.

The minimum number of particles per scanned volume are 18,400
for the Vigneau-approach (Eq. (1) – confidence level α = 0.05) and
9600 for the Koglin-approach (Eq. (2) – acceptable sampling error fP
= 0.05). The chosen Vigneau-approach results in a theoretical mini-
mum target particle concentration of 10%. In the experiments this re-
sults in an average particle number of approx. 25,000 for target
concentration 10% and approx. 35,000 for 15% (Table 4).

3.2. Sedimentation

In preliminary studies of the wax preparation method, two side-
effects where observed. First, the reconstructed volume shows an
inner cylinder of the tube (silicone, temperature range from 60 °C to
200 °C). This can be explained by the temperature gradient between
the tube-hull (room temperature) and the hot wax (T ≈ 80 ° C). The
inner tube-hull is wetted by the first wax volume that gets in contact.
Thewax hardened (togetherwith the contained particles) and becomes
the new interface to the next wax volume elements (Fig. 7 - a). The
higher the gradient, the thicker the layer. The image was generated by

10
 %

Ta
rg

et
 c

on
ce

tr
at

io
n

15
 %

Tube extraction HEIGHT-validation (TEH) Extraction POINT-validation (EP)
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b
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d

Extraction HEIGHT Extraction POINT

10-1 10-2 10-3

15-1 15-2 15-3
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LOESS-fit

a

10-4 10-5

Fig. 8. Calculated concentrations for target concentrations 10% (top) and 15% (bottom); Left shows the validation of the extraction height (top, middle, bottom) of the suction-tube and
right the validation of the extraction point from the sample volume; Fitting curves are generated with LOESS-approach [40]. High differences in extraction point validation (a), outlier
(b) and indication of agglomerate (c, d).

Slice 10 Slice 280 Slice 470
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Fig. 9. Reconstructed slices from different sample heights for target concentrations 10% (10-1/bottom) and 15% (15-2/top) before (white), with (grey) and after the agglomerate (black)
with marked agglomerate and void.
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the aggregation of the minima in all slices (ImageJ 1.51w, operation:
Image/Stacks/Z Projection/Max Intensity).

The second effect was induced by unintentional tilting of the tube.
Vertical sedimentation effects due to gravitational force are suppressed
by theflow-induced force in the opposite direction. Horizontally placed,
Fg is perpendicular to the flow direction - particles accumulate at the
bottom of the inner-hull (Fig. 7 - b). To avoid these two effects, a
tube-heating system and an automated fluid extraction unit was con-
structed that guarantees a defined aspiration speed in vertical align-
ment without critical temperature gradient.

3.3. Concentration

For the experiments, two concentrations where chosen that lay
within the theoretically calculated cmin (Eq. (3)) and cmax (Eq. (6)), de-
fining an operational range (Fig. 4) from 10% to 15%. All data points in
Fig. 8 are fitted with the locally weighted scatterplot smoothing
(LOESS) by Jacoby [40] (stiffness 0.4 → empirically chosen in compari-
son with image data, confidence interval for each curve 0.95), that is a
simple nonparametric curve-fitting to empirical data.

The target concentrations are in good agreementwith the calculated
values with tendency to higher concentrations, except 10–4-Top from
the lower and 10–5-Bottom from the upper extraction point. At 15%

target concentration 15–3-Bottom shows a much higher concentration
of about 25%. One can see that for TEH the variation of the particle num-
ber is comparable for target concentrations 10% and 15%, contrary the
variation of the calculated particle concentration is 4 times higher
when going from 10% to 15%.

Peaks in the approximation (LOESS) curve (Fig. 8-c,d) result from
not perfectly wax-dispersed particle sample. In the reconstructed slices
agglomerates are visible that are followed by sections where no parti-
cles are present (voids). While suctioning, the agglomerated particle
collective pull a wake behind that pushes away particles out of this vol-
ume element. Fig. 9 shows two examples for target concentrations 10%
and 15% with coloured matching positions in the particle concentration
curves (Fig. 8-d,c).

When plotting the particle number against the concentration (Fig.
10) 15-3-Bottom can be identified as outlier and is so excluded from
the aggregated results of the particle size distribution (Table 4). Corre-
sponding standard deviations are labelled on the boxes thatmark target
concentration 10% for TEH and EP and 15% for TEH. Target concentration
10% for TEH has nearly the same variation of particle number but the
smallest variation of calculated particle concentration compared to 15%.

3.4. Particle size distribution

In Fig. 11, one can see the distributions of the equivalent spherical di-
ameter for target-concentrations of 10% and 15% for tube-extraction
heights bottom, middle and top. Although the boxes are on comparable
levels Table 4 shows increasing standard deviations in TEH when going
to lower quantiles. Higher concentrations cause a higher probability of
agglomerated particles. In this case, oversegmentation generates
smaller particles compared to well-dispersed systems - variance
increases.

4. Conclusions

X-raymicrotomography is a powerful tool to determine particle size
distributions. The paper discusses (1)what points have to be considered
when preparing small-scale particle samples for XMT-measurement.
The sample has to be representative and has to fit to the desired voxel
size, which determines the FOV. (2) Wax embedding was successfully
validated as preparation method for spherical particle systems for
XMT-measurement. (3) Target particle concentration should be in prox-
imity of theminimum concentration (Eq. (3)) to get statistically verified
number of particles but to minimize the risk of agglomeration (Fig. 9).
(4) The extraction point should be in the vertical centre of the sample
vessel and always outside of the rotation axis to guarantee a good blend-
ing. (5) The particle system should always be pre-characterized with
2D-methods (e.g. SEM, opticalmicroscopy) to verify binarization results
(e.g. hollow particles or binarization artefacts).

1340

13
90

3580

0.4

1.5

1.8
Target 10 %

Target 15 %

Fig. 10. Particle number vs. target particle concentration for experiments tube extraction
height (TEH) and extraction point (EP) for positions bottom, middle and top with given
standard deviations.
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Fig. 11. Equivalent spherical diameter for target-concentrations of 10% and 15% for tube-extraction heights bottom,middle and top; Box-plots with upper (0.75) and lower (0.25) quartile
as box, divided by median and whiskers at +/− inter-quartile-range (Quantile 0.75 - Quantile 0.25) times 1.5.
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Future work will focus on dispersion grade in each volume over the
sample (for a better measure for preparation quality) and particle sys-
temswith various particle shapes. Thiswill set new requirements to sta-
tistics (higher dimensional K-S) and maximum particle concentrations.
The presented segmentation algorithms are expected to be not suffi-
cient for this systems (particle detection - oversegmentation) and will
have to be replaced by supervised learning algorithms (e.g. neural net-
works [41]).

Raw-data files (Zeiss-format) and reconstructed slices can be re-
quested from the corresponding author.
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Nomenclature

Symbol: Meaning (Unit)
a: Cube side length (cmax) estimation (m)
α: Confidence interval (%)
cmin: Minimum particle concentration (vol-%)
cmax: Maximum particle concentration (vol-%)
dC: Ssample cylinder diameter (m)
dVx: Voxel size (m)
δα: Variation of Q0 (%)
fP: Sampling error (%)
hC: Sample cylinder height (m)
n: Number of elements of distribution (–)
nParticle: Number particles (–)
nStitch: Number of stitches (scan) (–)
nVoxel, sep: Number of separating voxels (cmax estimation) (–)
P: Probability (%)
Q0: Number based distribution function (%)
t: t-Value from student-t distribution (–)
VCylinder: Volume of sample cylinder (m3)
VParticle: Volume of particles nParticle (m3)
x: Particle size (m)
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Highlights

• Self–constructed low–cost automated syringe
• Easily to adapt to different measurement geometries
• Controlled suctioning speed and volume
• Programmable ramp to avoid entry of air–bubbles in matrix



Method Article

Self-constructed automated syringe for
preparation of micron-sized particulate samples
in x-ray microtomography

Ralf Ditscherlein*, Thomas Leißner, Urs A. Peuker
TU Bergakademie Freiberg, Agricolastraße 1, 09599 Freiberg, Germany

A B S T R A C T

In X-ray microtomography the sample has to meet special requirements regarding (1) mechanical stability
(blurring), (2) geometry (FOV - field of view, rotational symmetry) and (3) composition (high attenuating phases).
When analyzing micron-sized particulate material (e.g. powders), the particles in the FOV have to be (4)
statistically representative and fixation (embedding matrix) becomes a critical issue due to segregation and
agglomeration effects. The authors describe a self-constructed, low-cost automated syringe that allows
controlling aspiration speed and suctioning volume. The carrier matrix is a wax structure that is shock frozen
within a small polymeric tube. With this, the authors could successfully validate the method to determine particle
size distributions (PSD). The described method is used in a related study by Ditscherlein et al. (2019).

� Low-cost automated syringe constructed with LEGO-parts and automatized with Arduino-microcontroller.

� Particle sample embedded within a shock-frozen wax matrix.

� Reproducibility successfully demonstrated by determining particle size distributions.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Specifications Table
Subject Area: Engineering
More specific subject area: Particle Characterization
Method name: Micron-sized particle sample preparation for XMT-analysis
Name and reference of original method: Please see bib-keys at the end of the document
Resource availability: Hardware-part

https://store.wayneandlayne.com/products/bricktronics-shield-kit.html
LEGO Digital Designer
https://www.lego.com/de-de/ldd/download
LEGO Digital Designer File
FluidExtractionUnit.lxf
Arduino Script
FluidExtractionUnit.ino

Method details

Motivation

New application fields of particle technology, e.g. coatings, pharmaceuticals or electronic
components require more and more highly defined particles in the lower micrometer range. In this
case, the particle size distribution (PSD) is no longer sufficient to define the specifications alone. The
particle system has to be described by the PSD, but also by further distributed properties, which are for
instance the particle shape distribution or the particle composition distribution. Tomographic particle
characterization is one key methodology to provide the data, required to quantify these specifications.
The tomogram of a representative particle sample contains information on the size and shape of each
individual particle. The data of X-ray absorption furthermore gives hints on the material properties
and structure of intergrown or composite structures.

One central task in the tomography of a particle sample is the segmentation of the image data.
When the particles in the sample are too close to each other, separating individuals can be challenging
(one possible approach for segmentation algorithms for aggregated particles is given by Münch et al.
[2]). On the other hand, oversegmentation can occur, when a particle is separated into two or more
individuals during the image processing. In both cases, the physical sample preparation, which keeps
the particles at a defined distance, is a key factor to minimize image segmentation errors.

The established techniques known from SEM, TEM or automated mineralogy (MLA) cannot be
transferred to X-ray tomography, because they only have to provide a representative 2D-measuring
plane. The 3D-sample preparation introduced here, is able to provide a homogeneous particle sample
immobilized (minimization of segregation and agglomeration: Fig. 1-A, B) within a matrix material
with low X-ray absorption that fits the required geometrical demands. This is (1) the rotational
symmetry of the sample to ensure comparable X-ray-penetrated lengths (Fig. 1-C). (2) the sample has
to fit to the desired field of view (FOV) to avoid region of interest tomography inside the sample that
would increase exposure time (due to sample thickness and higher number of needed projections) and
the probability of artefacts generated by material outside the FOV (Fig. 1-D).

To create such samples, there are already several syringes on the market starting at approx. 1300 s,
but only for infusion. Dual systems for infusion and withdrawal starting at approx. 2300 s. They are
offering multiple additional features and precision that is much too high for this application, which
makes the equipment very expensive. The system described here reduces these costs by factor 10–15.

Materials & methods

Using wax as embedding matrix

Normal procedure for fixation of particles for volumetric scans is to embed them into a matrix that
meets the requirements of the used measurement technique. In case of X-ray tomography, epoxy is a

2 R. Ditscherlein et al. / MethodsX 7 (2020) 100757
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known standard adapted from 2D-methods like mineralogical analysis. It has a low X-ray attenuation
coefficient and is stable at room temperature. In case of particles in the lower micrometer range, the
settling velocity of the particles is not negligible. Due to the hardening time of the resin, segregation
leads to a different composition of vertical sections. Direct particle contact can lead to a challenging
segmentation procedure, especially in case of irregular shapes.

In recent studies, gel-like matrixes have been used for particle sample preparation that are stable at
room temperature (e.g. Agar investigated by [3], but not good machinable. The focus of this study is to
create a sample that is stable over a long period of time and is good machinable (e.g. for correlative
analysis where sub-samples have to be cut out to reduce the FOV or to prepare 2D sections).
Histological wax is an alternative that is known from biological sample preparation due to the good

compatibility of matrix and investigated structures. Also positive is a negligible shrinkage rate
while hardening, good cutting properties and a low X-ray attenuation coefficient that is comparable to
resin. A good summary of miniaturized alternatives to conventional sample preparation techniques

Fig. 2. Sample preparation rack with extraction unit and heating gun (A), polymeric tube with solidified wax after shock
freezing (B), sample stack with sub-samples from 3 different positions (top, middle, bottom) (C) and projection image from one
sub-sample from sample stack (D).

Fig. 1. Segregation (A) and agglomeration (B) effects while embedding particulate samples in matrix, geometrical requirements
for the sample: rotational symmetry (C) and appropriate sample size fitting to the field of view (D), adapted from [1].
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for solid samples is given by Pena-Pereira [4]. A good summary of existing methods for biological
sample preparation and their applications in X-ray microtomography is given by Strotton [5]. In 3D
particle analysis, wax embedding methods are rarely mentioned. One example is given by Van Meel
et al. [6], where wax is used as binder for tablets.

Only using wax does not solve the problem of segregation. For this, the wax is additionally shock
frozen within a small polymeric tube (Fig. 1-E, F). The experimental setup with a mounted validation
sample is shown in Fig. 2.

Specifications

The authors used a histological wax from PothHille (PHC9061) with a melting point between 59
and 61 �C. The silicone tube has an inner diameter of 2 mm, which corresponds to the requested
sample size for the tomographic measurements (X-ray microscopy system ZEISS Xradia VERSA 510,
2048 pixel detector, camera binning 2, 80 keV, 7 W).

Automated syringe

The automated syringe is shown in Fig. 3. For the construction, LEGO Digital Designer1 was used. To
connect the Arduino-Board (AB) to the LEGO-NXT motors and sensors, a circuit board from Wayne &
Lane2 was used. The high torque of the NXT-motors can move the piston of the syringe accurately and
with low voltages of the AB, which saves additional circuit boards and power sources. The AB offers the
chance to program individual movement paths, adapted to the specific needs of the sampled material,
e.g. a controlled start-up to prevent abrupt changes of motion, which can cause unwanted mechanical
stress. The LEGO-parts are listed in Table 1. Fig. 4-A shows the assembled syringe mounting with tube
connection (a), syringe (b) and rack (c). Fig. 4-B shows the 3D construction model from LEGO Digital
Designer. The corresponding file and the Arduino-Script can be found in the supplemental material.3

Method validation

As idealized sample, a spherical soda-lime glass-particle system (SiLibeads, type S from Sigmund
Lindner) with particle sizes below 50 mm was chosen (72.3% SiO2, 13.3% Na2O, 8.9% CaO, 4.0% MgO,
1.5% others). The number based cumulative distribution at sample positions top, middle and bottom
(with regard to their extraction height from the polymeric tube) and the characteristic quantiles show
no significant differences (data basis: 3 replicates for each extraction position). Detailed results are

Fig. 3. Fluid extraction unit (A) with controller (B), motor (C) and trigger (D), A-detail: flexible tube (a) mounted on a syringe (b)
with a dynamic suction volume V which is increased by transforming rotational motion of a gear (c) in translation (d) with the
speed v, B-detail: Arduino UNO R3 as basis (e) with a NXT-Shield (f) as extension to connect LEGO-motor (g, C) and trigger (h, D).

1 https://www.lego.com/de-de/ldd/download.
2 https://store.wayneandlayne.com/products/bricktronics-shield-kit.html.
3 FluidExtractionUnit.lxf, FluidExtractionUnit.ino.
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Table 1
LEGO part list with brick number, name and quantity.

Brick Name Quantity

300526 BRICK 1 � 1 2
300426 BRICK 1 � 2 1
300326 BRICK 2 � 2 4
654126 TECHNIC BRICK 1 � 1 6
370026 TECHNIC BRICK 1 � 2, Ø4.9 1
3200026 BRICK 1 � 2 M. 2 HOLES Ø 4,87 1
370126 TECHNIC BRICK 1 � 4, Ø4,9 6
389426 TECHNIC BRICK 1 � 6, Ø4,9 2
370226 TECHNIC BRICK 1 � 8 2
273026 TECHNIC BRICK 1 � 10 Ø4.9 2
389526 TECHNIC BRICK 1 � 12, Ø4,9 5
302421 PLATE 1 � 1 2
302326 PLATE 1 � 2 3
379426 PLATE 1 � 2 W. 1 KNOB 16
243123 FLAT TILE 1 � 4 6
306821 FLAT TILE 2 � 2 3
306823 FLAT TILE 2 � 2 7
302226 PLATE 2 � 2 1
371026 PLATE 1 � 4 2
366626 PLATE 1 � 6 5
302026 PLATE 2 � 4 2
4514845 PLATE 1 � 12 6
303126 PLATE 4 � 4 5
303521 PLATE 4 � 8 2
428226 PLATE 2 � 16 1
428221 PLATE 2 � 16 1
4211114 PLATE 6 � 10 3
4210720 PLATE 6 � 14 3
4180508 RIGHT PLATE 2 � 3 W/ANGLE 1
4180536 LEFT PLATE 2 � 3 W/ANGLE 1
4297185 CABLE 0,5 M 2
4296929 Push sensor 1
4297008 Tacho Motor 1
4142822 TECHNIC 3 M BEAM 1
3227126 TECHNIC ANGULAR BEAM 3 � 7 2
662926 TECHNIC ANGULAR BEAM 4 � 6 4
4107578 DOUBLE ANGULAR BEAM 3 � 7 45� 2
663226 TECHNIC LEVER 3 M 2
4211573 1/2 BUSH 2
4211483 CONNECTOR PEG W. KNOB 2
4142865 2M CROSS AXLE W. GROOVE 1
273621 BALL W. CROSS AXLE 2
4129886 CONNECTOR PEG 23
4225927 CONNECTOR PEG/CROSS AXLE 13
4211622 BUSH FOR CROSS AXLE 2
4514553 CONNECTOR PEG W. FRICTION 3 M 3
4211086 CROSSAXLE 3 M WITH KNOB 4
4210810 DOUBLE CROSS BLOCK 2
370726 CROSS AXLE 8M 1
373726 CROSS AXLE 10M 1
4120102 GEAR WHEEL T = 8, M = 1 5
374323 TOOTHED BAR M = 1, Z = 10 6
4142825 GEAR WHEEL Z24 2
393826 PLATE 1 � 2 (ROCKING) 3
393726 ROCKER BEARING 1 � 2 3
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Fig. 4. Syringe mounting (A) with tube connection (a), syringe (b) and rack (c); 3D construction model in LEGO Digital Designer
(B).

Table 2
Aggregated results particle size distribution (average, standard deviation) from all measurements; For experiments tube
extraction height-validation (TEH) and extraction point-validation (EP) with given target particle concentration and average
number of particles N per experiment.

Quantile avg / mm stddev / mm

Exp. TEH EP TEH EP

Conc. 10% 15% 10% 10% 15% 10%

0.01 10.3 10.0 10.0 0.5 2.4 1.0
0.05 15.8 15.8 16.1 0.8 2.5 1.3
0.10 19.2 19.7 19.7 1.0 1.6 1.4
0.25 24.8 25.0 25.0 0.9 1.0 1.1
0.50 30.6 30.6 30.7 0.8 1.0 1.0
0.75 37.6 37.6 37.5 0.7 1.2 1.0
0.90 44.6 44.4 44.4 0.6 1.1 1.0
0.95 48.3 48.1 48.1 0.6 0.9 1.0
0.99 53.5 53.4 53.4 0.6 0.7 0.8
N (avg) 25580 35220 24770

Fig. 5. Number based cumulative distribution of the equivalent spherical diameter (ESD) of a spherical particle sample
(5 . . . 50 mm) for 3 different extraction points from the sample tube (A), quantiles of the ESD at the same positions for
variation-analyses (B).
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summarized in Table 2. Number based cumulative distributions and summarizing box-plots of all
extraction heights are shown in Fig. 5. More details can be found in Ref. [1].
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The characterization of multidimensional particle property distributions through computed tomography re-
quires an adapted sample preparation strategy. This strategy should both generate as many spatially separated
particles as possible in the smallest achievable volumes and also enablemechanically and vacuum-stable samples
that are suitable for correlative measurement, for example with high-energy ion beam methods. In the present
study an epoxy-based method is presented that minimizes the negative influence of particle sedimentation by
adding very low X-ray absorbing graphite nanoparticles as spacer. A machine learning-based method is pre-
sented to discretize the particle system. Results are compared with data from 2D SEM validation measurements
and data of a previous study.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Characterizing multidimensional particle-discrete properties is a
key challenge in modern process design and development. As X-
ray Microtomography (XMT) has become one of the main non-
destructive and non-intrusive three-dimensional (3D) characteriza-
tion methods in engineering [1,2] and materials science [3], it is
used to capture 3D particle samples to generate distributions of par-
ticle properties.

Since the X-ray Microscope (XRM) detector used in this study is
non-energy-dispersive, all photons are summed only by their number.
The correlation of material composition and 3D information is not pos-
sible by XMT alone, because the X-ray spectrum of each line path
through the sample is “lost” after the transformation in the scintillator
material. Additional information from other analysis methods must be
correlated. As proposed [4] for mineral particles in the particle size
range above 300 μm. In this study, we extend this method down to
micrometer-sized particles as a supplement to the successfully vali-
dated wax preparation method presented [5].

To create valid 3D datasets, a minimum number of particle-discrete
values is needed to obtain a statistically representative sample [6,7].
“Particle-discrete” means that the scanned volume, also referred to as

Field of View (FOV), consists of distinct objects, each one consisting of
a defined number of voxels. The challenge now is to have as many par-
ticles as possible in the scan volume while at the same time creating
enough space between them, so as not to compromise the subsequent
segmentation into individual volumes. This becomes evenmore impor-
tant when it is necessary to reduce the sample volumewhen correlating
other methods such as Focused Ion Beam (FIB)-Scanning Electron Mi-
croscopy (SEM), which then allows shifting scales from micro- down
to nanometer resolution.

Fig. 1 shows different preparation strategies for particulate samples
to prevent particle movement while scanning. Particles in the millime-
ter and upper micrometer range are usually fixed as bulk, e.g. by a
foam structure (a), embedded in epoxy (b), or spread on an adhesive
polymer sheet which is rolled to a cylinder (e) [8]. In all cases, the fixa-
tion should be designed to prevent direct particle-particle contacts to
avoid the need of complex image segmentation tasks caused by the Par-
tial Volume Effect (PVE). In tomographic imaging, the PVE is caused by
structures below voxel resolution producing voxels consisting of more
than one phase. The output is an unclear non-linearly averaged grey
value, depending on the phase shares. Possible solutions to prevent di-
rect particle-particle contact can be epoxy hardened under rotation to
minimize the influence of gravity (d) [9] or shock freezing of pre-
dispersed particles in molten wax (f) where the latter technique was
chosen for Part 1 of the study [5,10]. Bridging analysis technologies to
higher magnification levels, sub-volumes have to be extracted physi-
cally, e.g. by FIB-SEM or virtually, e.g. with Region of Interest (ROI)-
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tomography. Physically or virtually, the volume fraction of the parti-
cles in the matrix should be high enough to guarantee a sufficient
number of particles in the sub-volume, much higher than in conven-
tional embedding workflows. Additionally, the matrix material itself
must be vacuum-stable and must not break down into critical com-
ponents under the influence of high energy, e.g. the application of
an ion beam in case of FIB-SEM, that would contaminate the vacuum
chamber. All these requirements place the focus back on the applica-
tion of epoxy.

The epoxy method presented in this work is intended to minimize
direct particle-particle contacts. This is done by pre-dispersing the par-
ticles of interest with the help of another particle system consisting of
low X-ray absorbing material below the targeted voxel size, in this
case nanographite. After embedding this mixture into epoxy, hardening
time is not critical anymore, because the additional particles together
with the resin work as spacers between the particles of interest. Real-
ized already for mineralogical two-dimensional (2D) analysis [11,12],
this method is now adapted and validated for 3D tomographic experi-
ments in the present paper. Although we will discuss the application
in X-ray tomographic analysis in the following, the presented method
is also applicable for laser milling [13] and serial sectioning purposes
[14]. Note that the method in the following will be referred to as
Epoxy-Nanographite (ENaG).

As proposed in the first part of this study [5], we now use a ma-
chine learning algorithm for the image processing workflow, in our
case Waikato Environment for Knowledge Analysis (WEKA) [15], a
free software package developed at the University of Waikato, New
Zealand, which is available as a plugin for Fiji [16] (https://imagej.
net/plugins/tws/), a derivate of the commonly known ImageJ envi-
ronment. To ensure comparability, the datasets of the wax method
are evaluated again in the same way and compared with the ENaG
method.

The paper is organized as follows: first, starting with alternative
preparation methods to the wax method, second, a methodological de-
scription of the preferred ENaGmethod and evaluation of four indepen-
dent samples, followed by a short explanation of the utilized machine
learning procedure and the application to the datasets of the wax
method in order to compare both.

2. Materials & methods

2.1. Particle system

For this study, we use a spherical soda-lime glass-particle system
(SiLibeads, type S from Sigmund Lindner GmbH) with particle sizes
below 50 μm (72.3% SiO2, 13.3% Na2O, 8.9% CaO, 4.0% MgO, 1.5%
others). To have a defined particle size distribution, the material was
classified to cut off particles of sizes below 5 μm. A detailed description
of the particle system is given in the previous study.

2.2. Sample preparation

The FOV and the sample size are firmly linked via the finite number
of pixels on the CCD detector of the XRM. Optimally, the overall sample
should fit to the FOV to avoid long scanning times caused by a large
number of required projections [17] and large radiated lengths. In addi-
tion, particulate samples in the lower micrometer range make the fol-
lowing demands on the sample preparation: (i) Analysis particles
should be well dispersed with sufficient distance to avoid PVE in the
particle-matrix-particle transition region, which simplifies the subse-
quent image segmentation step; (ii) the matrix material/composition
should consist of a lowX-ray absorbingmaterial to guarantee good con-
trast and optimal scanning times; (iii) for correlative analyses, the sam-
ple should be mechanically and vacuum-stable to avoid contamination
of process compartments.

A good degree of dispersion can be achieved by inserting the particle
sample in a fluid or by rubbing the sample mechanically. In both cases,
the dispersed phase has to be fixed to avoid particle motion while scan-
ning. The present paper deals with a vacuum stable epoxy (EpoThin 2,
Buehler). As mentioned above, the hardening time of the resin is not
short enough to avoid particle sedimentation in the sample volume.
Even extremely fast curing resins, e.g. photo-initiated thermal frontal
polymerization, have an average curing time of more than 10 s [18].
One possible solution is the addition of a third phase, which in combina-
tionwith the epoxy portion serves only as a spacer to keep analysis par-
ticles at distance. Therefore, we use graphite nanoparticles (Carbon
black powder, Lamp black 101, Orion, average particle size 95 nm).

Fig. 1. Particle sample preparation methods with corresponding reconstructed slices: (a) Loose bulk of particles with a foam fixation on top, (b) particles embedded in epoxy with
(c) significant segregation during solidification, (d) epoxy sample rotating while curing, (e) particles spread on a rolled adhesive polymer sheet, (f) particles embedded in a shock-
freezed wax matrix [5].
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These particles are nearly X-ray transparent in the energy regime used
during measurements (80 keV) and their size is many times below
the voxel resolution used in this study (2 μm).

Fig. 2 shows the dry dispersion process in detail. All steps are per-
formed with a rubber spatula (a) on a sheet of paper (b), which is
pretreated with nanoparticles to “pre-coat” the surface of the paper.
The particles of interest (white) and spacer particles (black) (c) are con-
stantly stressed by the spatula in different directions with only light
pressure (d). In order to prevent the sample from spreading over an in-
creasingly large area, it is swept together at regular intervals with the
spatula followed by continued rubbing. In the experiment, this proce-
dure was applied for about 10 min for each sample until no white
stripes, which would indicate remaining macroscopic agglomerates,
are visible and the sample is assumed to be sufficiently well dispersed
(e).

In the next step, the pre-dispersed particles aremixedwith epoxy. In
both mixing procedures (resin & hardener, final resin & pre-dispersed
particle sample) slow vertical stirring prevents the introduction of air
bubbles. Preliminary studies have shown that only large air bubbles
(larger than 1 mm) near the fluid surface have a chance to disappear
under vacuum. Smaller bubbles are incorporated into thematrix during
solidification. Fig. 3 visualizes the manufacturing procedure of the final
sample for XRM-scans. At the beginning, the paste-like mixture of
nanographite, particles, and epoxy (a) is sucked with a syringe into a
small polymeric tube (2 mm inner diameter) and closed on the top
end (b). After curing between 6 and 9 h, the sample is cut out of the
tube (c) and formed (d). For low-resolution scans, the resulting sample
cylinder is glued onto a needle pin (e) for sample mounting. For high-
resolution scans, a disk is cut from the sample cylinder which is cut a
second time into a sample bar with approx. 500 μm in width (f). Then,
the sample bar is also glued onto a needle pin (g).

2.3. XRM measurements

Details on the XRM measurements and related artefacts can be
found in [5]. A short introduction on the application of tomography
measurements in particle technology is given by Leißner et al. [19]. De-
tails regarding the XRM measurement are given in Appendix A of the
Supplementary Material.

In this study, we use a 4× magnification that gives a voxel size of 2
μm. It should be emphasised here that histogram adjustment during re-
construction (byte scaling) should only be carried out moderately. That
means that areas assigned to the air and the matrix and do not seem to
be of interest at first glance should not be masked out by cropping, as
this deletes useful features for further image processing. A subsequent
evaluation of the distribution, for example of the air bubbles in the

sample volume, can also no longer be carried out in this way, as the
grey values for air and epoxy are unified by too much byte scaling and
can no longer be distinguished afterwards.

2.4. Trainable WEKA segmentation

In this study, we used version v3.2.34 of the 3D trainableWEKA seg-
mentation plugin. The applied method here is called supervised learn-
ing as the user utilises a part of the dataset to train a machine learning
algorithm, the result of which is in turn evaluated by the user himself.
Although quality measures are available, e.g. an Out of Bag (OOB)
error, they are not objectively comparable in general and depend
strongly on the selected objects in the training dataset. On reflection,
however, it becomes clear that this is the case in almost every quantita-
tive assessment of image data and does not represent a disadvantage of
this method.

The training itself starts with defining reasonable classes for the
current dataset. In our case, the limitation to three classes, (i) the par-
ticle, (ii) the entrapped air, and (iii) the epoxy matrix (incorporating
also the graphite nanoparticles) was considered to be not sufficient
to create good results. “Good” in this case means that the resulting
classification fits to the underlying structures, which was determined
visually. Some highly absorbing particles (appear significantly brighter
than an average particle), which have been assigned to the particle
class during training, shift the grey value distribution of all class-
associated particles towards higher values. The same occurs when
PVE areas in the particle-matrix-particle transition region are assigned
to the epoxy class. Since PVE areas are similar to the particle class,
areas within particles are now often wrongly assigned to the epoxy
matrix, to name just one example of misclassification. One possible so-
lution is to add two new classes assigned to highly attenuating parti-
cle and PVE-structures, respectively, which are called separators in the
following. So, the resulting classes are (i) particles, (ii) air, (iii) epoxy,
(iv) highly attenuating particles, and (v) separators. Note that the ad-
ditional separator category significantly improves the segmentation
result, but this effect is limited. Strongly cohesive particle systems
that cannot be dispersed by mechanical stress and are still present
as aggregates must be predispersed in a different way. The share of
PVE is otherwise dominant and ultimately leads to a bias in the parti-
cle size distribution.

After the definition, a certain number of objects within the image
stack have to be assigned to the classes to prepare a learning basis for
the algorithm. In practical terms, this means using different marking
tools (circle, freehand shape, line) to mark particles, for example, and
assign them to the particle class. An attempt should be made to include
different structural characteristics, e.g. not only perfectly roundparticles

Fig. 2. Dry dispersion of particle sample with graphite nanoparticles: dry dispersion with a rubber spatula (a) on a pretreated sheet of paper (b) with their calculated shares (c), after
applying the rubber spatula (d), final state with no visible agglomerates (e).
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with a homogeneous structure, but also irregular, very large/small par-
ticles, etc., same with all other classes. To capture potential gray value
histogram fluctuations over the height of the image stack, objects
should not only be assigned in one slice but at different height regions.
Especially in the case of particles, it is beneficial to mark single particles
in 2D belonging to the same 3D particle to train also the connection of
objects in three dimensions.

We select a decision tree approach (fast random forest model) with
a minimum sigma of 1.0 and a maximum sigma of 8.0 and variance,
mean and structure as training feature ensemble. A feature here is a
measure, which is applied to the marked training structures and used
as split criteria for the decision tree. Good results were obtained when
having at least 5000 pixels per class, except classeswith very rare occur-
rences in the dataset, e.g. highly attenuating particles. After training on
one small dataset, the resultingmodel was applied to all other datasets.
Here, size was set to 600 per 600 Pixels over the full sample height for
the test environment implying 128 MB of working memory.

2.5. Determination of the particle size distribution

TheWEKA algorithm creates a false colour image, each colour corre-
sponding to one of thefive training classes. For quantitative analysis, the
particle class and the class of high X-ray attenuatingparticleswere com-
bined to create the initial dataset for 3D segmentation, which is in this
case a watershed algorithm. After the discretization of the dataset, the
number of voxels is determined for every particle and back-calculated
to an equivalent spherewith the correspondingEquivalent Spherical Di-
ameter (ESD). Details regarding the full image processing workflow are
given in Table 1.More details on all separate classes concerning the orig-
inal dataset can be found in Appendix B of the Supplementary Material.
For validation purposes, we use a set of 2D SEM images of dispersed par-
ticles on an adhesive tape. Here, wemeasure all particles from the top to
the bottom of the image to get a statistically representative particle size
distribution. One example is given in the Appendix C of the Supplemen-
tary Material. Note that this procedure fits for the 2D data set, but com-
pared to the 3D procedure described above, it can lead to significant
deviations especially for irregularly shaped particles, which is com-
monly referred to as stereological bias.

3. Results and discussion

3.1. Particle concentration

The experiments were carried out with mixing ratios of nanoparti-
cles and particles of interest of 60:40, 40:60, and 20:80, with an initial
particle mass of 0.64 g. Preliminary experiments showed that a 20:80
mixture is the optimal case in terms ofmaximization of particle number
keeping enough distance between them. For this, assuming a monodis-
perse bulk of nanoparticles (density 1.8 g cm−3) and a theoretical po-
rosity of 0.5 for a loose bulk of graphite powder, which is in this case
only a rough estimate, the calculated mass for the initial sample is
0.38 g (density of epoxy 1.2 g cm−3). Due to the high surface area of
the nanographite (29 m2 g−1), this quantity was slightly increased to
guarantee a paste-like suspension that could be sucked into a syringe.
The final mass was determined with 0.40 g of epoxy that would result
in a particle concentration of 39%. This was validated by applying a
macro in Fiji (ImageJ 1.51w), which binarizes each slice of the tomo-
gram (black pixels: matrix, white pixels: particles) and sums up white
pixels to give the concentration of particles in the ENaG matrix. Note
that previously the influence of air inclusions (Fig. 5a/c) had to be
corrected (b/d,e) to determine the correct particle concentration. The
code snippet can be found in Appendix D of the Supplementary

Fig. 3. Paste-like mixture of ENaGmatrix and particles (a), extractedwith a syringe into a polymeric tube (b), hardened and cut (c), formed (d) andmounted on a sample holder for low-
resolution measurement (e), cut into a bar (f) and mounted for high-resolution measurement (g).

Table 1
Image processing steps for acquiring the particle size distribution regarding ESD for rea-
sonable method comparison.

Image processing step Reason Reference

1. Removing first/last 50
slices

Cone-beam artefact [20]

2. WEKA classification – [15]
3. Removing first/last 25

slices
Misclassification in marginal areas –

4. Combining class (I)
and (IV)

–

5. Filling holes of
particles

Reasonable comparison with ESD –

6. 3D Watershed Split Separation of contacting particles [21]
7. 3D Objects Counter Determining particle-discrete

voxel-based volumes
[22]
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Fig. 4.Application of the trainableWEKA segmentation algorithm. Selection of a cropped training dataset 200 per 200 pixel (a), object assignment to respective classes (b), finally resulting
in a model (in this case random forest trees, (c), giving a classified image for validation (d). Application of the model to a larger dataset 600 per 600 pixel (f) to get a classified image (g).

Fig. 5. Concentration of particles in the ENaGmatrix for four different samples for (a)without and (b)with correction for air inclusions showing all curves above the theoretical prognosis;
(c) one example for air inclusion with binarized section for (d) particles and (e) air.
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Material. With 42% to 48%, the calculated value is higher than the target
concentration, but close to the expected value considering the very
rough porosity estimation. The highest standard deviation is found in
Sample 2 with 0.74 vol%, the lowest in Sample 4 with 0.58 vol%.

In figures, there were about 25,000 particles in the analysis volume
for the wax method, and about 80,000 particles for the ENaG method.
Considering the smaller analysis section of 600 by 600 pixels, an esti-
mated particle number of the total volume of 125,000 is a 5-fold in-
crease compared to the same volume with the wax method.

3.2. Sample homogeneity

The samples’ homogeneity was tested by applying the same macro
used for the determination of the particle concentration in the previous
Section. In contrast to the previously used single thresholding method,
the available differentiated segmentation result (see Fig. 4g) now
makes it possible to consider all individual classes separately. In a
completely homogeneous sample, the proportions would have to be
distributed more or less equally over the sample height. Fig. 6
(a) shows all color-coded classes stacked from left to right over the
full height of the vertical sample. The share of high attenuating particles
is comparably low, which can be seen in a detail magnification (b). The
proportions are relatively evenly distributed over the sample height,
with Sample 4 showing the largest proportion of air bubbles. Although
small variations can be explained by missegmentation, there seems to
be a global variation towards the top and bottom of the sample. If we
now compare all histograms of the 2D sectional images (macro see
Appendix E of the Supplementary Material), we see a clear shift of the
histogram peaks very close to the sample edges. This can be explained
by the cone beam artefact of the XRMmeasurement. For the evaluation,
the top and bottom50 slices are removed by default. Ifwe now compare
not only the position of the histogram peaks, but also the standard devi-
ation of the grey value distribution per slice, a variation in height
emerges here. Since the standard deviation of the grey value distribu-
tion of the overall sectional image has been chosen as a training feature
in theWEKA algorithm, it quickly becomes clear that a higher standard
deviation also affects the variationwithin individual structures and thus
the segmentation result. Since the samples originate from four

independent experiments and were taken at different heights of the
tube, an influence of the sampling can be ruled out here. Marginal ef-
fects of the segmentation algorithm itself were also examined and eval-
uated as negligible. Details can be found in Appendix F of the
Supplementary Material.

3.3. Particle size distributions

Comparing the distribution densities of the presented ENaGmethod
and the 2D SEM validation there are only minor deviations as can be
seen in Fig. 7. These are not restricted to a specific particle size range
and are likely the sumof random fluctuations anddifferences in the par-
ticle size determination procedure already described in Section 2. Also,
the tomograms of the wax preparationmethod were classified and seg-
mented in the same way and also show very small deviations. After re-
construction, thewax and the ENaGmatrix show nearly the same X-ray
attenuation properties, which sounds trivial, but was crucial to success-
fully apply the sameWEKA classification model. Detailed results can be
found in Appendix G of the Supplementary Material.

4. Conclusions

As a supplement to the previous study byDitscherlein et al. [5] based
on a shock-frozen wax matrix, we now describe an epoxy-based
method for mechanically resistant particle systems. Here, we introduce
nanographite particles below the used voxel resolution as spacer to
avoid a sedimentation process in the slow-curing epoxy matrix. This
method known from 2D automated mineralogy was now validated for
3D tomographic measurements. Since segregation effects no longer
play a role, themethod ismuchmore suitable for larger particle systems
and particle systems of higher density. However, due to the graphite
spacer particles used, this only applies to particle systems with an X-
ray attenuation coefficient greater than graphite in order to guarantee
a sufficiently high contrast in areas of comparable density. The method
is alsowell suited for correlativemethods that requiremechanically and
vacuum stable samples of different sizes. Note again that this method is
not suited for brittle particles systems like fibres, because the mechani-
cal treatment would alter the system significantly by particle breakage.

Fig. 6.Verification of the homogeneity of the four samples by stacking the relative proportions of all five classes (a),withmagnification to show the very small share of the high attenuating
particles (green, b). Additional verification on the stacked 2D histograms (c) acquired from the corresponding 2D slices (d) showing a variation of the standard deviation from the top to
the bottom of the stack.
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The presented approach ofWEKA segmentation proves to be promising
also for the application for further particle systems even of different
preparation methods. A detailed comparison is a reasonable objective
for further investigations, but goes far beyond the scope of this paper.
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Appendix A: XRM Measurements

In our case, all scans were carried out with an XRM, ZEISS Xradia 510 Versa. Compared
to standard micro-CT devices, with an XRM we are able to apply a second magnification
step to increase the resolution by a factor of 10. Therefore, after passing the sample, the
geometrically magnified signal is projected on a scintillator screen, converted to VIS and
magnified a second time with microscopic optics (magnifications 0.4x, 4x, 20x, 40x). So, it
is possible to reach a minimum voxel size of about 0.3 µm. Table S1 summarizes detailed
measurement parameters.

X-ray source
Sample

Scintillator screen
+ optics

CCD

Geometrical Optical magnification

Figure S1: XRM setup with highlighted X-ray cone-beam path (red) and transformed VIS
beam path (blue).

Table S1: Parameters for measurement (Meas.) and subsequent reconstruction (Recon.)
for both, Low-resolution (Low-res) and High-resolution (High-res) measure-
ments.

Parameter Low-res High-res

M
ea

s.

Sample size / mm 2 0.5
Field of View (FOV) / mm 2 0.4
Acceleration voltage / keV 80 80
Electrical power / W 7 7
Source filter (Zeiss standard) LE4 LE2
Exposure time / s 1 10
Optical magnification 4 0.4
Number projections 2001 2001
Angle range / deg 360 360
Voxel size / µm 2 0.4
Binning 2 2

R
ec

on
. Algorithm FBP

Smoothing (Gauß) 0.7
Beam Hardening Correction 0.05
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Appendix B: WEKA Feature Extraction
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Figure S2: Validation of assignment result to all five distinct classes, which are particles,
high attenuating (ha) particles, both assigned to the superior group of the
particle phase, separator, epoxy and air, all three assigned to the superior
group of the background phase. Note that the markings correspond to the
magnification of the segmentation result and the respective colours correspond
to the classes.
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Appendix C: SEM Validation

As a reasonable validation method, a proper particle sample was dispersed on an object
slice. After taking 10 SEM images on 10 random positions, all particles in these images
were marked in ImageJ manually and corresponding diameters were summarized as a
whole sample of ≈ 1000 particles.

Figure S3: Exemplary SEM image for 2D validation.

Appendix D: ImageJ Macro – Concentration

dir = getDirectory("Choose a Directory with BINARY Images (Particles white |

Background black");

list = getFileList(dir);
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row = 0;

nBgPxSum = 0;

nPtPxSum = 0;

pC = newArray(list.length+1);

nBgPx = newArray(list.length+1);

nPtPx = newArray(list.length+1);

slice = newArray(list.length+1);

//iterating through the whole image stack

for (f=0; f<list.length; f++) {

path = dir+list[f];

if (!endsWith(path,"/")) open(path);

if (nImages>=1) {

if (endsWith(path,"f")) {

t=getTitle();

s=lastIndexOf(t, ’.’);

t=substring(t, 0,s);

t=replace(t," ","_");

t2= t +’_filtered’;

run("Clear Results");

nBins = 256;

getHistogram(values, counts, nBins);

numberBgPixel = counts[0];

numberPtPixel = counts[255];

particleConcentration = numberPtPixel / (numberBgPixel + numberPtPixel) *

100;

nBgPxSum = nBgPxSum + numberBgPixel;

nPtPxSum = nPtPxSum + numberPtPixel;

slice[row] = list[f];

nBgPx[row] = numberBgPixel;

nPtPx[row] = numberPtPixel;

pC[row] = particleConcentration;

row++;

close();

}

}

}

particleConcentrationVolume = nPtPxSum / (nBgPxSum + nPtPxSum) * 100;

//writing all results to an array (direct table output not working)

run("Clear Results");

setResult("sliceNumber", 0, "ALL");

setResult("NumberBackgroundPixel", 0, nBgPxSum);

setResult("NumberParticlePixel", 0, nPtPxSum);

setResult("ParticleConcentrationInPct", 0, particleConcentrationVolume);

for (i=1; i<list.length+1; i++) {

setResult("sliceNumber", i, slice[i]);

setResult("NumberBackgroundPixel", i, nBgPx[i]);

setResult("NumberParticlePixel", i, nPtPx[i]);

setResult("ParticleConcentrationInPct", i, pC[i]);
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}

setResult("sliceNumber", list.length+1, dir);

Appendix E: ImageJ Macro – Stacked Grey Values

dir = getDirectory("Choose a Directory with BINARY Images (Particles white |

Pores black");

list = getFileList(dir);

//stretching of the log-scale to get "nice" gray scale

logLevel = 50;

row = 0;

newImage("2DHistogram", "8-bit white", 255, 1000, 1);

newImage("MaxCountDistribution", "8-bit black", 255, 1000, 1);

for (f=0; f<list.length; f++) {

path = dir+list[f];

if (!endsWith(path,"/")) open(path);

rename("slice");

nBins = 256;

selectImage("slice");

makeOval(0,0,600,600);

getHistogram(values, counts, nBins);

selectImage("2DHistogram");

maxValueInRow = 0;

posOfMaxValueInRow = 1;

for (i = 0; i < 255; i++) {

//log-transformation of the data

//log() is the natural log, divided by log(10) it gives the 10-based log

logCounts = log(counts[i])/log(10) * logLevel;

if (logCounts > maxValueInRow) {

maxValueInRow = logCounts;

posOfMaxValueInRow = i;

}

setPixel(i, row, logCounts);

}

selectImage("MaxCountDistribution");

//one pixel before and after the max to enhance visibility

setPixel(posOfMaxValueInRow-1, row, 255);

setPixel(posOfMaxValueInRow , row, 255);

setPixel(posOfMaxValueInRow+1, row, 255);

//log(0) --> -infinity-value ("1/0") will be changed to "0"

changeValues(1/0, 1/0, 0);

close("slice");

row++;

}

//overlay of max peak over the generated 2D histogram

run("Merge Channels...", "c2=MaxCountDistribution c4=2DHistogram create keep");
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Appendix F: Potential WEKA Marginal Effects

To investigate potential marginal effects of the machine learning assisted classification
algorithm, Sample 1 was artificially divided into three separate datasets. After perform-
ing the classification via the WEKA algorithm, the relative differences of the individual
datasets to the total dataset were determined. Figure S4 shows only slight variations in
the marginal regions, the “contact region” of the individual parts.
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Figure S4: Relative difference between the original dataset and three related subsets.
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Appendix G: Detailed Results
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Multiscale Tomographic Analysis for Micron-Sized Particulate
Samples

Ralf Ditscherlein1*, Orkun Furat2, Mathieu de Langlard2, Juliana Martins de Souza e Silva3, Johanna Sygusch4,
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Abstract

The three-dimensional characterization of distributed particle properties in the micro- and nanometer range is essential to describe and
understand highly specific separation processes in terms of selectivity and yield. Both performance measures play a decisive role in the
development and improvement of modern functional materials. In this study, we mixed spherical glass particles (0.4–5.8 μm diameter)
with glass fibers (diameter 10 μm, length 18–660 μm) to investigate a borderline case of maximum difference in the aspect ratio and a sig-
nificant difference in the characteristic length to characterize the system over several size scales. We immobilized the particles within a wax
matrix and created sample volumes suitable for computed tomographic (CT) measurements at two different magnification scales (X-ray
micro- and nano-CT). Fiber diameter and length could be described well on the basis of the low-resolution micro-CT measurements
on the entire sample volume. In contrast, the spherical particle system could only be described with sufficient accuracy by combining
micro-CT with high-resolution nano-CT measurements on subvolumes of reduced sample size. We modeled the joint (bivariate) distribu-
tion of fiber length and diameter with a parametric copula as a basic example, which is equally suitable for more complex distributions
of irregularly shaped particles. This enables us to capture the multidimensional correlation structure of particle systems with statistically
representative quantities.

Key words: multidimensional particle characterization, multiscale X-ray tomography, parametric copula, statistical image analysis
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Introduction

The characterization of distributed particle properties is a key
challenge in chemical engineering to understand the relation
between microscopic features and macroscopic effects.
Two-dimensional (2D) imaging methods are used to reveal mul-
tiple properties at once. Static methods, such as light microscopy,
were supplemented by dynamic methods, which represent a sig-
nificant development, especially with regard to the statistical rep-
resentativeness of the samples (Brown et al., 2005). Image tracking
algorithms were used to compensate for stereological errors from
the 2D image description, but only down to particle sizes of
around 100 μm (Macho et al., 2019). A complete three-
dimensional (3D) description of a collective of particles smaller
than 10 μm is not possible with these methods.

Computed tomography (CT) measuring methods, on the other
hand, are well-established over length scales from centimeter to

the submicrometer range. Depending on the physical measure-
ment principles and the experimental setup, every measuring
method has its limitations, both in analysis volume and spatial
resolution. X-ray CT is one of the most common 3D imaging
techniques used in the engineering sciences to visualize internal
structures of solid-state phases nondestructively (Stock, 1999).
The X-rays used are capable of penetrating solid matter, their
absorption coefficient being a function of the material density
of the sample, the length penetrated, the photon energy, and
the atomic number of the compound elements. The measurement
parameters are therefore strongly related to the material and its
dimensions (Pavlinsky, 2008). Compared to 2D radiological imag-
ing, the tomography setup offers a chance to analyze the 3D struc-
ture of objects in the field of view (FOV) without stereological
error. By rotating the sample, a series of projections can be cap-
tured—each image with the attenuated sum signal along the
beam path. The transformation of the series of 2D images into
a 3D volume is based on Fourier, algebraic, or statistical algo-
rithms (Buzug, 2008).

Initially only available at monochromatic synchrotron facili-
ties, state-of-the-art systems are now also available in laboratories,
for micrometer (X-ray micro-computed tomography, micro-CT)
and submicrometer range imaging (X-ray nano-computed
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tomography, nano-CT) (Maire & Withers, 2014). This has opened
up the possibility to work on extensive questions from particle
measurement technology even without access to measurement
time at synchrotron beamlines.

Particles with sizes below the voxel resolution are often used
for contrast enhancement of complete phases or as markers of
specific regions (Shilo et al., 2012). Alternatively, particles with
sizes larger than the voxel resolution can be used directly as align-
ment markers in 3D imaging (Hagen et al., 2014). Studies on par-
ticle properties can be found for single particles (Liu et al., 2016),
a limited number (10–100) of free particles (Bagheri et al., 2015),
as crystals in mineralogical phases (Kahl et al., 2017) or as mac-
roscopic units with properties like layer thickness (Zhong et al.,
2019) or bulk properties (Sjödahl et al., 2012). In contrast, the
tomographic analysis of particulate samples of a statistically rele-
vant quantity (more than 1000 particles) with distributed multidi-
mensional properties is rarely mentioned in the literature
(Cepuritis et al., 2017).

Since particle systems are, in many cases, composed of parti-
cles with size distributions covering more than one size scale, a
multiscale approach is a fundamental requirement in order to
be able to describe them precisely with respect to their multidi-
mensional properties. Studies often focus on solids to determine
material properties like layer composition (Moroni et al., 2016)
or micro-processes like crack formation (Burnett et al., 2014).
In this study, we investigated a mixture of two particle systems
of very different particle sizes. We created a 50/50 (by weight)
mixture of spherical glass particles (diameter min 0.4 μm, median
1.2 μm, max 5.8 μm) and glass fibers (diameter 10 μm, median
length 82 μm, longest fiber 660 μm) to investigate a borderline
case of maximum difference in the aspect ratio and a significant
difference in size. Thus, the geometrical properties of spheres
and fibers can only be analyzed simultaneously by a combination
of tomographic analysis methods on two magnification levels
(X-ray micro- and nano-CT).

The basis of a quantitative evaluation of the reconstructed
tomography image data is a sequence of individual image pro-
cessing algorithms that is precisely adapted to the properties of
the individual particles in the image (image processing work-
flow). In our case, we start to identify the fibers and the spheres
by segmentation. This is a fundamental step, since the statistical
analysis of the particle system strongly depends on the shape and
size of the particles and thus on the quality of segmentation.
Therefore, we apply the so-called marker-controlled watershed
transform, one of the most widely used segmentation algo-
rithms, which has proved to be robust and efficient (Meyer &
Beucher, 1990; Soille, 2013). The geometry of a segmented
fiber is characterized by its length, specific surface area, and
cross-section diameter. A parametric representation of the
bivariate distribution of the fiber’s length and the specific surface
area is obtained using copula theory (Durante & Sempi, 2015).
The fitted copula model enables to capture the correlation struc-
ture between the length and the specific surface area (the
so-called marginal distributions), hence, leading to a more infor-
mative description of the fiber system. For the spheres, the
volume-equivalent diameter and the specific surface area are
used as geometrical criteria, and a copula model is also fitted
to this bivariate distribution. Therefore, it is possible to get a
full parametric description of the entire particle system by
combining the two individual copula models, either using a
number- or volume-weighted version of the bivariate probability
density functions.

This paper is organized as follows. In the section Materials and
Methods, we introduce our sample preparation method, focusing
on representativeness and sample size. A summary of the mea-
surement parameters and the description of the image processing
procedure then presented. In the section Results and Discussion,
we propose a reasonable multidimensional characterization
approach, using a copula model and correcting edge effects, to
characterize the particulate material composed of fibers and
spheres.

Materials and Methods

Preparation of Particulate Samples

A conclusive tomographic analysis of a particulate sample has to
meet the following requirements:

1. Enough particles to describe statistically relevant distributed
properties.

2. FOV-adjusted sample size to avoid large scanning times and
artifacts.

3. Spatially separated particles to avoid segmentation errors.
4. An appropriate voxel size to distinguish interesting features.

These four requirements have to be balanced with respect to
the number and the size ranges of particles. The last two require-
ments are related to the partial volume effect (see Supplementary
Appendix B).

Statistical Representativeness
Analyzing particles as a collective with distributed properties
requires a representative sample within a scanned volume.
Practical approaches to calculate a minimum number of particles
based on statistical models are given in the literature (Koglin et al.,
1974; Vigneau et al., 2000). We determined the optimal volume
concentration of spherical particles, immobilized and embedded
in a matrix, in prestudies with 10 vol% (Ditscherlein et al.,
2019). The minimum concentration cmin is given by the ratio of
the total particle volume VParticle and the volume of the sample
cylinder VCylinder, i.e.,

cmin = VParticle

VCylinder
= nParticle · 43p · x3

nStitch · p dC
2

( )2·hC , (1)

with the number of particles nParticle, equivalent spherical
particle diameter x, the number of vertical stitches nStitch (in
this study, equal to 1), diameter dC, and height hC of the sample
cylinder. In Figure 1, the determined minimum number of
particles is shown as a set of ISO-lines going from low particle
volume concentrations to a limit concentration for a monodis-
perse particle fraction (hexagonal close packing, c ≈ 0.74, see
case (b) in Fig. 1). Due to limited machining capabilities for
sample preparation, there is also a practical lower limit of the
sample size (c). The shift from a large FOV (a-1) to a smaller
one (a-2) with constant particle size (equivalent spherical
diameter) means that the resulting operating point is near the
first ISO-line (10,000 particles) for cmin = 0.01. The estimation
of the minimum concentration using equation (1) is exact
solely in the case of sphere-like particles. The generation of a
sufficient fiber statistic is much more challenging when
combined with spheres which are two to three scales smaller
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than the longest fiber. In such a situation, the measurement of a
suitable sample volume over two different length scales is
required.

Sample Size Adjustment
If the required FOV at a chosen magnification is smaller than
the biggest lateral dimension of the sample, regions that are
only illuminated by penetrating X-rays in certain angle ranges
create artifacts in the reconstructed sample volume (Kyrieleis
et al., 2010) (especially for highly X-ray absorbing materials).
A well-known rule of thumb to determine the needed number
of tomographic projections is nProjection = π/2 · nPixel,Detector.
For scans inside the sample (Region of interest tomography,
see Supplementary Appendix D), the detector does not cover
the entire area of the actual projection image that can lead to
artifacts in the final reconstruction. To avoid that, the number
of detector pixels nPixel,Detector has to be increased to reach the
largest lateral dimension of the sample (nPixel,Sample). This
requires a much longer scan time, not only by increasing the
number of projection angles but also by the longer X-ray radi-
ation per projection angle. In the case of monochromatic X-rays
(nano-CT), the integral energy flux is very low compared with
the polychromatic radiation of the micro-CT (for details
regarding the CT scanners, see Section Multiscale tomographic
measurement or Supplementary Appendix C). Thus, these
effects are getting even worse. Reducing sample size (Fig. 2a)
is the best way to minimize scan time and to avoid artifacts.
Nevertheless, a system of particles with very high aspect ratio
(fibers) is a natural limitation. This can only be overcome by
measuring on two different scales with two different sample
sizes: Large samples for low-resolution (low-res) scans and
smaller samples for medium-resolution (med-res) and high-
resolution (high-res) scans.

Immobilization by Wax Embedding
The particle system considered in this study was a mixture (50/50
by weight) of two types of glass particle fractions, one being
spheres and the other fibers. Spherical soda-lime glass particles
were purchased from VELOX, Germany (SG7010, Q0.10 0.62
μm, Q0.50 2.67 μm, Q0.90 4.99 μm), borosilicate-glass fibers from
Schwarzwälder Textil-Werke, Germany (FG160/060) with median
fiber length of 82 μm, largest fiber length of 660 μm, and narrowly
distributed average fiber diameter of 10 μm. Some statistical mea-
sures were performed using images acquired from light micros-
copy and scanning electron microscopy (SEM) and are
summarized in Supplementary Appendix A.

To avoid motion artifacts and to ensure the spatial homogene-
ity of the particles in a sample volume for optimal image segmen-
tation results, the particles must be immobilized. Conventional
methods of particle embedding in epoxy-based resins, as used
in the preparation of polished sections, e.g., multidimensional
particle analysis using Mineral Liberation Analysis (MLA) (an
example given by Buchmann et al., 2018), are not suitable here
due to the long curing times. Therefore, we have embedded the
particles in a histological wax that is normally used for biological
sample preparation. We used a target volume concentration of
10%, which we controlled in image segmentation afterwards.
Subsequent to drawing of the molten wax particle suspension
into a polymer tube, the volume was shock-frozen within the
small polymeric tube, resulting in a sample cylinder of approxi-
mately 1.6 mm diameter after forming (Ditscherlein et al.,
2020). Figure 2a shows the sample preparation procedure begin-
ning with a cylindrical shape (2 mm diameter, a-1) for low-
resolution scans, that is manually sliced down (a-3 and a-4) to
a bar for medium- and high-resolution scans (≈0.5 mm diameter,
a-5). In previous studies (Ditscherlein et al., 2019), we showed
that the particles are homogeneously distributed over the sample
height. Thus, considering two of these different positions from the
cylindrical sample was sufficient for the current study.

Fig. 1. Possible working area for preparation of particulate samples for a target particle number of 10,000 going from large FOV (a-1) to a smaller FOV (a-2), with
concentration limit for spherical monodisperse hexagonal close packing (b) and a minimum FOV due to sample processing (c).
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Multiscale Tomographic Measurements

When handling voxel-based data, it is important to distinguish
between voxel and spatial resolution. The voxel resolution only
describes the 3D equivalent to the detector pixel resolution (con-
sidering the binning to virtual pixels), which is given by the
mechanical and optical magnification of the system. This infor-
mation is insufficient with respect to the effective spatial (struc-
tural) resolution, which is a function of the measurement
parameters and the properties of the sample itself. Taking this
into account, objects smaller than 100 voxels were removed
from the data set. In all three resolution modes, the tomograms
were exported as a stack of tiff images of approximately 1024 ×
1024 pixels. A comparison of both experimental setups is
shown in Supplementary Appendix C. Measurement parameters
are summarized in Table 1.

Micro-CT Measurements
Low-resolution and medium-resolution measurements were per-
formed using a micro-CT (Zeiss Xradia VERSA 510) with a poly-
chromatic X-ray source, a rotating tungsten anode, a maximum
acceleration voltage of 160 keV, and a maximum power of 10
W. Compared to conventional X-ray micro-CT systems, an addi-
tional optical system increases magnification by a factor of 10.
This two-step magnification gives a minimum voxel size of 0.3
μm. Reconstruction was done using the software Zeiss
XMReconstructor (Version 11.1.8043) with the aim of minimiz-
ing manipulations in preprocessing (smoothing, beam-hardening
correction). No beam hardening was visible in the reconstructed
slices. Due to the cone beam artifact, 50 slices were removed

from the top and bottom of the data set before image postprocess-
ing. A summary of relevant artifacts related to micro-CT mea-
surements is given by Boas & Fleischmann (2012) and Davis &
Elliott (2006).

Nano-CT Measurements
High-resolution imaging was performed using a nano-CT (Zeiss
Xradia Ultra 810), which operates at a constant X-ray photon
energy of 5.4 keV (monochromatic, no beam-hardening artifacts)
with parallel beam geometry (no cone-beam artifacts) and a rotat-
ing chromium anode. The minimum voxel size in high-resolution
mode is 16 nm. For the experiments, absorption contrast imaging
in large field of view mode (minimum voxel size 64 nm) was used.
Image reconstruction was performed by means of the software
Zeiss XMReconstructor (Version 10.0.3878.16108).

Image Segmentation

Marker-Controlled Watershed Transform
The segmentation procedure for each CT image is based on the
marker-controlled watershed transform. One of the first papers
where the watershed transform was considered is presented by
Meyer & Beucher (1990). It takes advantage of the topographic
representation of a grayscale image: the parts of the image with
low intensities are represented as “valleys,” while the regions
with high intensities are assimilated as high altitude reliefs.
First, a set of regional minima M of the image has to be deter-
mined. Then, the construction of the watershed lines can be
seen as the result of a flooding process: water starts to rise at a

Fig. 2. Large sample mounted on rotating sample stage (a-1), unmounted (a-2) for slicing in small disks (a-3) and sectioning into a small bar (a-4), and remounted
for medium- and high-resolution measurements (a-5). Relation between sample size, voxel size, and characteristic particle size—corresponding range marked with
a box: extended FOV of nano-CT by ROI measurement (b-1), minimum sample size limited by machining (b-2), fixed correlation between sample and voxel size
determined by binning factor (b-3), overlapping measurement field for determining fine particle fraction (b-4), and micro-CT measurement to determine fiber
length (b-5).
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constant speed from the minima and a dam is constructed if two
or more floods from different minima may touch. The resulting
dams are the watershed lines and delimit the segmented regions
(called catchment basins) of the images. For further details on
the watershed transform, see Soille (2013), Vincent & Soille
(1991), and Gonzalez et al. (2002).

The marker-controlled watershed transform is an adaptation
of the classical watershed transform for which the set of minima
M is considered as a set of markers. Each marker locates an indi-
vidual object to be segmented. The ridge lines will then be the
contours of the objects. In general, the set M of markers may
be difficult to construct. The construction of the markers depends
usually on the type of the image and the object properties (shape,
size, gradient intensity, etc.).

Segmentation of Low- and Medium-Resolution CT Images
For the low spatial resolution (low-res) CT image, only the fibers
are clearly visible. Thus, the segmentation procedure consists of
the following main steps:

1. Global thresholding and morphological opening operation to
remove small objects.

2. Computation of Euclidean distance transform of the comple-
mented binary image of the fibers.

3. Marker computation: extended-maxima transform of the dis-
tance transformation computed in step 2.

4. Application of the marker-controlled watershed transform.

In steps 1 and 2, rather basic image processing operations are
performed (Serra, 1983; Gonzalez et al., 2002). Step 3 is a well-
known technique (Soille, 2013) to construct a set of markers
from the Euclidean distance transform, and step 4 is the applica-
tion of the marker-controlled watershed transform using these

markers (Soille, 2013). The flowchart in Figure 3 illustrates the
application of these steps for a specific slice. Further segmentation
results are visualized in Figure 4. The fibers (in blue) are generally
well segmented. However, some under segmentation is observed.
It is addressed with a postprocessing procedure (described below).

The segmentation of spherical particles for the medium spatial
resolution (med-res) CT image is a challenging task as the parti-
cles are too small to be clearly visible. After having removed the
fibers from the image, the proposed segmentation procedure is
the same as for the low-res CT image. The spheres (in blue) are
generally highly under-segmented. Indeed, noise and artifacts espe-
cially affect the binarization of small objects (for details regarding
the partial volume effect, see Supplementary Appendix B).

Segmentation of High-Resolution CT Image
The segmentation procedure for the high spatial resolution (high-
res) CT image consists of the following main steps:

1. Intensity adjustment and smoothing with a nonlocal mean fil-
ter (using a Gaussian kernel).

2. Performing a morphological ultimate opening operation.
3. Global thresholding. The binary image is further cleaned up

with a morphological opening operation: small objects of less
than 100 voxels are removed.

4. Computation of Euclidean distance transform of the comple-
mented binary image.

5. Marker computation using the extended-maxima transform.
6. Application of the marker-controlled watershed transform.

Figure 3 illustrates the application of these steps for a specific
slice. Steps 1 and 3–6 have already been detailed for the segmen-
tation of the low-res CT image. The ultimate morphological open-
ing (Beucher, 2005, 2007) (step 2) is a less-known technique for

Table 1. Measurement and Reconstruction Parameters of All Three Resolution Modes—Low-Resolution (low-res), Medium-Resolution (med-res), and High-Resolution
(high-res).

Parameter Micro-CT Micro-CT Nano-CT

Low Resolution Medium Resolution High Resolution

Sample size diameter (mm) 1.6 0.5 0.5

Field of view (FOV) (mm) 1.5 0.3 0.065

Acceleration voltage (keV) 80 80 5.4

Electrical power (W) 7 7 900

Target material (–) Tungsten Tungsten Chromium

Source filter (Zeiss standard) LE4 LE4 *

Exposure time (s) 2 25 60

Optical magnification 4 40 *

Number of projections 3201 3201 901

Angle range (°) 360 360 180

Voxel size (μm) 1.5 0.3 0.064

Binning 2 2 1

Reconstruction algorithm FBP FBP FBP

Smoothing (Gauß) 0.1 0.1 –

Beam hardening correction 0.05 0.05 *

*denotes not applicable for monochromatic measurements.
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image segmentation. Note that the ultimate opening operator θ(v)
is defined as follows:

u(v) = sup
i[{1,...,N}

(ci(v)− ci+1(v)) for each v [ V , (2)

where V is the set of voxels, N is some integer, and ψi, respectively
ψi+1, is the morphological opening operator for a closed ball of
radius i, respectively i + 1. Then, the voxel intensity values of
the resulting image are the largest differences between the voxel
intensity values of successive openings. An important conse-
quence is that spherical objects, having the same textural informa-
tion, are emphasized. Therefore, the binarization of a union of
sphere-like particles is easier to undertake after preprocessing
the image with the ultimate opening operation. Note that the
value of N should be larger than the radius of the biggest sphere
within the image. Hence, the main drawback of the ultimate
opening is the computation time required to perform openings
for balls of important radii. Other applications of the

morphological ultimate opening were considered for text detec-
tion (Retornaz & Marcotegui, 2007), for facade segmentation
(Hernandez & Marcotegui, 2008), and for detection of microa-
neurysms on eye fundus images (Zhang et al., 2011).

Postprocessing of Segmented Images
A postprocessing procedure is applied to remove bias due to
under or over segmentation. Regarding the segmentation of fibers
in the low-res CT image, the following convexity constraint for a
segmented object S should be satisfied:

#S
#Conv(S)

≥ 0.5, (3)

where #S is the number of voxels of S and #Conv(S ) is the number
of voxels of its convex hull. The topological constraint in equation
(3) allows the reduction of the bias due to under segmentation,
resulting in nonconvex objects (see Fig. 4b).

Fig. 3. Segmentation procedure for the CT images. The red arrows correspond to the input and output of the segmentation procedure. The green arrows provide
the intermediate results for each of the transformations.
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For the spherical particles, a constraint on the shape of the seg-
mented objects is used. The sphericity coefficient Ψ, defined as the
ratio of the surface area of the volume-equivalent sphere divided
by the surface area of the corresponding segmented object, quan-
tifies the deviation from the spherical shape (Wadell, 1932; Bailey
et al., 2005; Lau et al., 2013). Note that for a segmented object S,
its sphericity ΨS is given by

CS = p1/3(6VS)
2/3

SS
, (4)

where VS and SS are the volume and the surface area of S, respec-
tively. The closer ΨS is to 1, the closer the shape of the segmented
object S is to that of a sphere. A standard estimator of VS is the
number of voxels of the segmented object S. The estimator used
for the surface area SS of S is based on the Crofton formula of inte-
gral geometry (Schneider & Weil, 2008). A formal definition of
the estimator can be found in Schladitz et al. (2006). Thus, all par-
ticles whose sphericity coefficient is smaller than the threshold of
0.8 and 0.45 for the high-res and med-res CT image, respectively,
are removed. The values of these thresholds were fixed empirically
by visual inspection.

Fig. 4. Examples of segmentation results for each resolution on different slices (a). The boundary of each segmented particles is highlighted in blue. Examples of
removed objects (in green) after the postprocessing procedure (b).
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Results and Discussion

Correction of Edge Effects

A common problem encountered in spatial statistics is that of edge
effects. They occur when the estimation of a certain geometrical
characteristic requires information from outside of the sampling
window. For instance, when determining the lengths of a popula-
tion of fibers within an image, all fibers that cut the boundary of
the sampling window are only partially observed. Taking into
consideration only the fully observed fibers leads to a length dis-
tribution which is biased because the probability that a long fiber
intersects the boundary of the sampling window is higher than
the one of a short fiber. In our case, the minus-sampling method
(Ohser & Schladitz, 2009; Chiu et al., 2013) is used, which con-
sists of taking a sub-window contained in the sampling window
such that all particles with nonempty intersection with the sub-
window are completely observed in the entire sampling window.
Then, considering all particles such that their center of mass is
inside the sub-window leads to an unbiased sample of the popu-
lation of particles.

An illustration how the minus-sampling method is applied in
the case of fibers is provided in Figure 5. The gray area visualizes a
cross section through the cylindrical sampling window. The sub-
window is the cylinder, whose cross section is delimited by the red

circle. All fibers in the sub-window do not intersect the boundary
of the entire sampling window. Then, only the fibers (in blue in
Fig. 5) whose center of mass is inside the sub-window are consid-
ered for the statistical analysis. The fibers highlighted in red are
removed by the minus-sampling technique. Note that the minus-
sampling technique cannot be used if the sub-window does not
include a sufficiently high number of fibers. Analogously, the
minus-sampling technique is applied to image data from which
the spherical particles are extracted. After applying the minus-
sampling method, the remaining segmented particles are the
basis for an efficient characterization of the particulate sample,
using parametric bivariate distributions of particle properties.
First, we fit such distributions to particle properties of spherical
particles and fibers individually. Then, the distributions for the
individual fractions have been combined to obtain a distribution
characterizing the entire sample.

Multidimensional Characterization of Spherical Particles

Univariate Distributions of Particle Size and Specific Surface
Area
For each spherical particle, the size d and the specific surface area
SVp are computed as geometrical characteristics. In the case of
spherical particles, the size d equals the volume-equivalent

Fig. 5. Minus-sampling technique to remove bias due to edge effects. The red circle is a cross section of the minus-sampling window, i.e., only particles whose
centroid is inside this reduced sampling window are sampled. Furthermore, the particles highlighted in red are removed. The particles in green are removed
due to the postprocessing technique. Only blue particles are taken into account for the statistical analysis.

8 Ralf Ditscherlein et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1431927620001737
Downloaded from https://www.cambridge.org/core. Technische Universitaet Bergakademie, on 06 Jul 2020 at 11:14:24, subject to the Cambridge Core terms of use, available at

9 Publications 112



diameter deq,Vp which is given by

deq,Vp =
6Vp

p

( )1/3

, (5)

where Vp is the volume of the segmented sphere. The volume Vp

is computed by counting the voxels belonging to the particle fol-
lowed by scaling with a single voxel’s volume. Since the spherical
particles are not perfect spheres their surface area S cannot be
directly computed from their size deq,Vp . Therefore, we compute
the surface area directly from image data using the Crofton for-
mula (Lehmann & Legland, 2012). Then, the specific surface
area SVp is given by

SVp =
S
Vp

. (6)

Supplementary Figure S2 provides histograms of the particle size
d for two resolutions. The significant differences between the dis-
tributions in the med-res and high-res CT images are not surpris-
ing. For the med-res CT images, important under segmentation,
due to blurred small spheres or noise/artifacts, was observed.
Hence, the distribution is biased toward larger sphere sizes.
Moreover, very small spheres, whose volume-equivalent diameters
are less than 1.5 μm, are not detected due to the insufficient res-
olution of the med-res CT images. In contrast to this, a large frac-
tion of spheres in the nanometer range is correctly segmented and
analyzed in the high-res CT images. The high resolution also
enables us to overcome the under segmentation problem encoun-
tered for the med-res CT images. Consequently, the particle size
distribution is right-skewed (see Fig. 6a). Thus, for the analysis
of the spherical particles, from hereon, we will solely use two
high-res images depicting the spherical particles at spatially differ-
ent locations. Histograms of the spherical particle’s size and spe-
cific surface area computed from these images are visualized in
Figure 6a.

For validation purposes, we compared the particle size distri-
butions computed from high-res image data and the SEM images
(see Fig. 7). The method to derive the particle size distribution
from the SEM images is explained in Supplementary Appendix
A. We observe an underestimation of the relative frequency for
particles with a diameter smaller than 0.6 μm in the case of the
high-res CT images. This is mainly due to the higher resolution
of the SEM images, which allows one to distinguish smaller
spheres more clearly. For the high-res CT images, with a resolu-
tion that is two times lower, it is hardly possible to segment such
small-sized spheres due to noise and artifacts. For bigger particles,
the two distributions are consistent, which demonstrates the pos-
sibility of using the nano-CT imaging technique in this size range.
Note that some overlapping effects appear in the SEM images (see
Supplementary Appendix A), which may complicate the segmen-
tation process and bias the volume-equivalent diameter distribu-
tion. Besides, the volume fraction of the segmented spheres in one
of the high-res images is about 4.4% (sample 1), which is slightly
smaller than the expected volume fraction of 5% (see Section
Material and Methods). In the other high-res image, the volume
fraction of 2.6% deviates significantly more from the target
value. The reason for this is the extremely small FOV of the high-
res measurement and the nonhomogeneous distribution of the
population of spheres within the sample volume. Since this effect
is independent of the particle size, the particle size distribution
remains unaffected.

Copula Approach
Since univariate histograms of one-dimensional particle charac-
teristics do not provide information about the correlation between
the considered characteristics, a more informative description of
the particulate system of spheres can be achieved by investigating
bivariate distributions. For this purpose, a parametric model can
be used to characterize the joint distribution of size d and specific
surface area SVp of the spherical particles. Note that the distribu-
tion of d (see Fig. 6a) is clearly not Gaussian, yet the values of d
and SVp are strongly correlated with a correlation coefficient of −
0.89. Thus, standard methods, which approximate the joint distri-
bution of size d and specific surface area SVp with a product dis-
tribution or a bivariate Gaussian distribution, are not applicable
in our case. Therefore, the joint distribution will be modeled
using copula theory (Durante & Sempi, 2015).

Note that a 2D copula C : [0,1] 2→ [0,1] is a cumulative distri-
bution function whose marginal distributions are uniform on the
unit interval [0,1]. It enables us to characterize the dependency
between correlated non-normally distributed random variables.
Specifically, in the 2D case, Sklar’s theorem (Durante & Sempi,
2015) states that, given two real-valued random variables X1

and X2 with cumulative distribution functions F1 and F2, there
exists a copula C such that the joint cumulative distribution func-
tion F of X1 and X2 is given by

F(x1,x2) = C(F1(x1),F2(x2)), for each (x1,x2) [ R2, (7)

where F(x1,x2) = P(X1 ≤ x1,X2 ≤ x2). From an easy computa-
tion, provided that C, F1, and F2 are differentiable, we find that
the joint density f of X1 and X2 is given by

f (x1,x2) = c(F1(x1),Fn(x2))f1(x1)f2(x2),

for each (x1,x2) [ R2,
(8)

where f1 and f2 are the marginal densities, and the function c is the
probability density function of the copula, i.e.,

c(u1,u2) = ∂2

∂u1∂u2
C(u1,,u2), for each (u1,u2) [ [0,1]2. (9)

Model Fitting
In order to fit a bivariate probability density f to the observed
pairs of size and specific surface area, we first fit the univariate
marginal densities f1 and f2. We considered eight possible choices
of parametric unimodal distributions, namely the gamma, nor-
mal, log-normal, Weibull, generalized extreme value, Rayleigh,
Nakagami, and Rician distributions. For each marginal, the best
fit is the one with the lowest value resulting from the Akaike infor-
mation criterion (Akaike, 1998) (AIC). Note that the AIC is a
measure of goodness-of-fit which is defined by

AIC = 2k− 2 log (L), (10)

where k is the number of model parameters and L the maximum
value of the likelihood function. The best fits were obtained for
the inverse Gaussian distribution and the gamma distribution
for the size and specific surface area of spherical particles, respec-
tively (see Fig. 6a).
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Now, in view of equation (8), the bivariate density f can
be fitted by determining a suitable copula density c. Similarly
to the univariate case, there are various parametric families
of copulas whose parameters can be determined using the
maximum likelihood method. More precisely, the bivariate
density f was fitted by determining the optimal copula density c
from a family of commonly used Archimedean copulas
(Durante & Sempi, 2015), where the considered Archimedean
copulas were the Ali-Mikhail-Haq, Clayton, Frank, Gumbel, Joe,
BB1, BB3, BB5, and BB8 copulas (Durante & Sempi, 2015). The
best fit, denoted by fsphere, which is the one with the highest
maximum likelihood, was obtained for the BB1 copula (see
Fig. 6b (right)).

Multidimensional Characterization of Fibers

For each fiber, the size d and the specific surface area SVp are com-
puted. While the latter is determined in the same manner as for
the spherical particles using equation (6), the size d of a fiber is
estimated in a different manner. Namely, the size d is the number
of voxels along the main directions of the segmented fibers, where
a principal component analysis (Pearson, 1901) is used to deter-
mine the main direction of a given segmented fiber. Furthermore,
for a fiber F, the diameter dcross of its cross section is estimated as
the diameter deq,AF of the area-equivalent disk which is given by

deq,AF =
�����
4AF

p

√
, (11)

Fig. 6. Statistical analysis of the segmentation results. Fitted parametric (marginal) distributions to size (left) and specific surface area (right) of the spherical par-
ticles (a); bivariate histogram (left) and its copula model (right) (b); number-weighted (left) and volume-weighted (right) bivariate probability density of size and
specific surface area of the entire particle system (c). Note that the number-weighted visualization has a logarithmically scaled colorbar.
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where AF is the area of the cross-section orthogonal to the main
axis of the fiber and located at half of the fibers length.
Histograms of the size, the specific surface area, and the diameter
are provided in Supplementary Figure S7a. We observe that the
fiber diameter distribution is concentrated around 10 μm with a
low standard deviation of 1.1 μm, which is consistent with the
provider specifications (see Section Materials and Methods).
Moreover, we compared the size distributions obtained from the
CT image and the light microscopy images (see Fig. 7). The
two distributions are consistent, which validates the proposed seg-
mentation procedure for the CT image. Besides, we obtained the
following quantiles for the size distribution using the CT image:
Q0.10 = 35 μm, Q0.50 = 69 μm, and Q0.90 = 197 μm. These values
are slightly lower than the ones derived using light microscopy
in the pre-characterization procedure (see Supplementary
Appendix A). This deviation is mainly due to some small fibers
which were missed during the manual segmentation of the light
microscopy images, which then leads to a shift of the size distri-
bution toward longer fibers. Regardless of this manual segmenta-
tion incorrectness, the overall size distribution derived from the
low-res CT image is consistent with that one of the pre-
characterization. Besides, the determined volume fraction of fibers
of 4.7% is only slightly smaller than the expected 5% (see Section
Materials and Methods).

Similarly, to the approach described in the section Model
Fitting, the joint distribution of fiber size and specific surface
area can be fitted using parametric copulas. In this manner, we
determine the bivariate probability density ffiber, depicted in
Supplementary Figure S7b.

Characterization of the Entire Particle System

In the previous sections, we have modeled the bivariate probabil-
ity densities fsphere and ffiber of particle size and specific surface
area for spherical particles and fibers, respectively. While the
probability density ffiber was derived using the low-res CT image
data, for the density fsphere characterizing the spheres the high-res
image data of the same particle system was utilized. Now, we com-
bine these probability densities to obtain a multidimensional,
multiscale characterization of the entire particle system. More pre-
cisely, the bivariate probability density fsystem of size and specific

surface area of the entire particle system is given by

fsystem = lfsphere + (1− l)ffiber, (12)

where λ ∈ [0,1] is the (number-based) mixing ratio λ. Since we
know that the considered particle mixture is a 50/50 mixture
(by weight) of spherical particles and fibers, we can determine
the mixing ratio. More precisely, the volume-equality of the frac-
tions is described by

l

∫1
0

∫1
0
fsphere(d,s)Vsphere(d)dd ds

= (1− l)
∫1
0

∫1
0
ffiber(d,s)Vfiber(d,s)dd ds, (13)

where Vsphere(d) = p
6 d

3 is the volume of a sphere with diameter d
and Vfiber(d,s) is the volume of a fiber with size d and specific sur-
face area s (see Supplementary Appendix E). By solving equation
(13) for λ, we obtain the theoretical mixing ratio λ = 0.9995. The
resulting bivariate and bimodal density fsystem is depicted in
Figure 6c (left). If no prior information is available, the mixing
ratio λ can be estimated from image data by

l =
nsphere

Vsphere,Cyl

nsphere
Vsphere,Cyl

+ nfiber
Vfiber,Cyl

, (14)

where nsphere is the number of spherical particles observed in the
volume Vsphere,Cyl and nfiber is the number of fibers observed in
the volume Vfiber,Cyl.

Note that the visualization of the number-weighted probability
density fsystem in Figure 6c (left) utilizes, due to the different
length scales of the particles, logarithmic axes. Furthermore,
due to the relatively large mixing ratio λ, a logarithmically scaled
colorbar is required to visualize the second mode corresponding
to the fibers. A different representation using the so-called
volume-weighted version fsystem,3 of the number-weighted density

Fig. 7. Comparison of the size distributions computed from the CT images (in blue) and the SEM and light microscopy (in red) images.
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fsystem is given by

fsystem,3(d,s) = 1
c

(
lfsphere(d,s)Vsphere(d)+ (1

− l)ffiber(d,s)Vfiber(d,s)
)
, (15)

where c is a normalization constant. The volume-weighted prob-
ability density fsystem,3 depicted in Figure 6c (right) no longer
requires a logarithmically scaled colorbar for visualization
purposes.

Both the bivariate number- and volume-weighted probability
densities of particle size and specific surface area are important
for the characterization and analysis of particle systems. In partic-
ular, the first one is of interest when small particles have a signifi-
cant influence on the distribution of properties of the overall
system, e.g., when considering the active surface of a catalyzer
material. On the other hand, the volume-weighted probability
densities can be of interest when the characterization focuses on
the mass of particles, e.g., when investigating the mass of a valu-
able material after some separation process has been completed.

Conclusions

The combination of micro- and nanotomographic X-ray imaging
is a powerful tool for the determination of multidimensional par-
ticle properties in the micro- and submicrometer range, capable of
bridging several orders of magnitude of particle size. We have
shown how to create a sample with a statistically representative
number of immobilized particles consisting of two very different
particle populations by embedding them into a wax matrix.
Furthermore, we emphasized the importance of adapting the
sample size to the field of view in order to link X-ray tomography
across different scales.

In contrast to the fibers, the size of the spherical particles is at
the lower resolution limit of micro-CT. Thus, smaller spherical
particles below the micrometer range are not detectable in the
reconstructed CT images, hence, leading to a bias in the
volume-equivalent diameter distribution. To minimize this well-
known phenomenon of voxel size-dependent description of 3D
objects, we first minimized the sample size, switched to a better
resolution (nano-CT) and, finally, applied suitable image process-
ing algorithms and statistical analysis to characterize the popula-
tion of spheres. The distributions of the volume-equivalent
diameter estimated from the nano-CT and micro-CT images
were significantly different, thus, confirming the need to adapt
the experiment and the statistical analysis to the size and shape
of the particles contained in the same particle system.

The sample volume must be large enough compared to the
typical particle size in order to contain a statistically relevant
number of particles and to remove edge effects when determining
the distributions of their geometrical properties. First, the correla-
tion structure of particle size and specific surface area has been
modeled separately for spheres and fibers, using copulas. The fit-
ted copula models provide a complete parametric description of
the population of spheres and fibers and are methodologically
easily adaptable to more irregularly shaped particles. Finally, by
combining these two parametric distributions, we obtained a mul-
tidimensional characterization of the entire particle system.

Our proposed workflow (including sample preparation, mea-
surement, image processing, and image analysis) for multidimen-
sional characterization of micro- and nanoscale particle systems is

the starting point for the analyses of products from multidimen-
sional separation processes and will be further discussed in forth-
coming studies.

Data availability

Reconstructed TIFF-stacks for high-resolution, medium-
resolution, and low-resolution measurements are stored within
the scientific data repository of the universities TU Dresden and
TU Bergakademie Freiberg with all relevant metadata
(Ditscherlein & Martins de Souza e Silva, 2019).

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927620001737.
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Appendix A: Particle system

For validation purposes in image processing, a detailed preliminary characterization of
the particle systems is mandatory. It enables us to quantify the accuracy of the proposed
segmentation procedure and to account for eventual bias linked to the image processing
workflow. Figure S1 shows cutouts of both analyzed particulate materials.

10 µm

Figure S1: SEM-images of fibres (top) with contamination on the particle surface (or-
ganic facening from production process) and spheres (bottom). Note that
these images are extreme examples and not representative for the analyzed
particle system.

For a reasonable pre-characterization of both particle systems in terms of size (spheres:
diameter, fibres: length) we used SEM and light microscopy 2D imaging methods. In-
tegral methods like laser diffraction (in case of spherical systems) are also available but
expected to be not comparable due to the different measurement principle. The work-
flow was as follows: (1) separate the particles on the object carrier, (2) take images at
10 random locations, (3) determine the size of each particle with the ROI-manager of
ImageJ (exemplary images of spheres and fibres see Figure S2) and (4) combine all data
sets.
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100µm

Figure S2: Exemplary SEM image showing the spheres (left) and exemplary image from
light microscopy showing the fibres (right)

Table S1: Statistical measures for particle systems determined by 2D image analysis
(spheres: SEM, fibres: light microscopy); (*) size is the equivalent spherical
diameter, (**) diameter from data sheet specification: 10 µm

Measures Sphere diameter* Fibre length**

in µm in µm

Q0.10 0.6 40.8
Q0.50 1.2 81.6
Q0.90 2.9 208.7

Min 0.4 17.7
Max 5.8 656.9

Number of particles 1181 1371

The resulting statistical measures of both particle systems are summarized in Ta-
ble S1. We refrained from automation, since overlay effects in the 2D representation
make meaningful binarization and segmentation difficult and, in the case of fibres, lead
to over-segmentation. The focus is clearly on 3D analysis.
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Appendix B: Partial volume effect

To analyze the particle distribution of our system, we have to distinguish each particle
from the background (in this study a wax matrix) and separate the agglomerated par-
ticles from each other. The relevant boundary layer (particle-matrix / particle-particle)
extends only partially into the surrounding voxel layer. The resulting gray values of
these voxels are a mixture between particle and matrix phase depending on their share
(partial volume) in the voxel and their specific X-ray attenuation capability. Figure S3
shows an example of a reconstructed CT-image slice of spherical particles (a). Particles
are aggregated (b,c-yellow) or physically connected/sintered (b,c-red). Segmenting the
particles means finding the proper delimited regions such that each region corresponds to
one particle. Gray blend pixels are assigned to either the particle (white) or the matrix
(black), which is called binarization by thresholding. In both cases this has an influence
on the number, size and shape of the resulting particles (compare d with e).

ba

d e

c

Figure S3: Magnification of a reconstructed tomographic slice (a) where connections
between particles are marked (arrow), example of physically connected (b-
red) and aggregated particles (b-yellow) with corresponding SEM-image (c),
change in particle size, number and shape after thresholding (d,e)

The exemplary analysis of the sphere diameters clearly shows the influence of partial
volume effect on the location and shape of the distribution (see Figure S4). Only in the
high-resolution CT images are the spherical particles sufficiently well resolved to be able
to depict their true size distribution.
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Figure S4: Comparison of the volume-equivalent diameter distributions computed from
the med-res and high-res CT images.

Appendix C: Experimental setup

The main difference between micro- and nano-CT is the type of X-rays. In both cases
X-rays are generated by the interaction between accelerated electrons with a specific
target material (in our case micro-CT/Tungsten, nano-CT/Chromium).

In micro-CT imaging the whole spectrum of X-rays (characteristic and bremsstrahlung)
is used as part of a conical beam that is generated by the interaction volume within the
target material. So, each individual volume element of the sample material interacts
with the whole energy-spectrum of X-rays and alters it. Because the detector is not
energy-dispersive, every arriving X-ray photon counts as part of the sum signal. Both,
the polychromatic spectrum and the conical beam shape, cause image artefacts.

In nano-CT imaging, a condensor lense filters a specific part of the spectrum and,
in this way, creates approximately monochromatic X-rays in a parallel beam. Thus,
there are much less artefacts. But because of the lower photon intensity, a much higher
exposure time is needed to generate a sufficient signal on the detector. Inside views and
corresponding measurement setups of both CT-scanners are visualized in Figure S5.
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a

c

b

d

Figure S5: Inside view of micro-CT (a) and nano-CT (c), with corresponding measure-
ment setups (b, d). 6

9 Publications 123



Appendix D: Region of interest (ROI) tomography

Ideally, the sample should be a little bit smaller than the field of view (FOV). Thus, when
going to higher voxel-resolution, the sample size has to shrink. If this is not possible due
to limited machining capabilities or simply because the sample should not be destroyed,
the FOV is shifted inside the sample (Figure S6-a). This affects the minimum number
of projections, needed for reconstruction, as discussed in the main part of the paper.

Projection

ProjectionReconstruction

a b

c

Figure S6: Comparison of two scans of the same sample – whole sample within the field
of view (a, FOV1), detail enlargement by ROI (a, FOV2), possible ROI-
identification problems (b,c)

ROI-tomography is also challenging in terms of searching for an appropriate scan
volume with enough particles in it. Especially when looking for certain structures, the
projection image does not tell us, whether the structures are inside the FOV. In this
case a common solution is to make a low-quality pre-scan with a limited number of
projections to search for the ROI. Afterwards, the determined coordinates are used for
a high-resolution scan.
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Appendix E: Multidimensional characterization of fibres

A cylindrical fibre is uniquely defined by its size d (height of the cylinder) and its cross-
sectional diameter dcross. Another process-relevant characteristic is its specific surface
area

SVp =
S

Vp
=

2dcross + 4d

d dcross
. (1)

The histograms of these characteristics and their parametric fits are depicted in Fig. S7a.
Furthermore, Fig. S7b. visualizes the bivariate probability density of size and specific
surface area using a bivariate histogram (left) and a parametric copula model (right).
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Figure S7: a) Fitted parametric (marginal) distributions to size (left), specific surface
area (middle) and diameter (right) of fibres; b) bivariate histogram (left) and
the fitted bivariate probability density using a BB8 copula (right).

Note that, instead of the size d and diameter dcross, both the size d and the specific
surface area SVp also uniquely characterize a fibre since

dcross =
4d

SVpd− 2
. (2)

Thus, we can, for example, express the volume Vfibre of a fibre as a function of size d and
specific surface area SVp by

Vfibre(d, SVp) =
π

4
d2

crossd =
4πd3

(SVpd− 2)2
. (3)
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Abstract

In the present paper, as part of an interdisciplinary research project (Priority Programme SPP2045), we propose a possible way to design an
open access archive for particle-discrete tomographic datasets: the PARROT database (https://parrot.tu-freiberg.de). This archive is the result
of a pilot study in the field of particle technology and three use cases are presented for illustrative purposes. Instead of providing a detailed
instruction manual, we focus on the methodologies of such an archive. The presented use cases stem from our working group and are
intended to demonstrate the advantage of using such an archive with concise and consistent data for potential and ongoing studies.
Data and metadata merely serve as examples and need to be adapted for disciplines not concerned here. Since all datasets within the
PARROT database and its source code are freely accessible, this study represents a starting point for similar projects.
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Introduction

In particle technology, a fundamental understanding of distribu-
ted particle characteristics is essential to develop efficient optimi-
zation strategies for processes based on particle–particle
interactions. For particle sizes below 10mm, there are numerous
established characterization methods that can determine particle
characteristics integrally or in a distributed manner (Bagheri
et al., 2015). Besides methods like laser diffraction or the measure-
ment of settling velocity, which are based on model assumptions,
for example, considering all particles to be perfect spheres, there
are methods based on 2D images like optical microscopy, scan-
ning electron microscopy (SEM), or dynamic image analysis
(DIA). With the latter, it is even possible to determine the particle
morphology for particle sizes above 100mm by capturing multiple
shadow images under random rotation angles (Macho et al.,
2019). Although these methods are able to generate distributions
of various particle characteristics in 2D, it is not possible to trans-
fer them to 3D without significant stereological bias in case of
nonspherical particles (Erdoğan et al., 2007; Kahl et al., 2017).

Real 3D particle data is needed. In the following sections we
would like to briefly motivate why the database solution shown
here (Fig. 1) is a benefit in dealing with such 3D data.

3D Characterization of Irregularly Shaped Particles

As the 3D representation of an irregularly shaped soda-lime glass
particle shows (Fig. 2, center), a full 3D description of the particle
shape cannot be derived from sectional or projection images of
2D microscopy, especially when taking into account that in prac-
tice these are not available for each particle simultaneously from
different perspectives. Only 3D characterization methods enable
to capture multiple particle-discrete characteristics of the 3D par-
ticle geometry (Ueda et al., 2018), providing the opportunity to
analyze distributions of characteristics on integral and particle-
discrete level and to connect them with each other to learn
more about the multidimensional interaction of particle charac-
teristics. In this context, particle-discrete means that each particle
is described by a vector of characteristics consisting of directly
measurable volume pixel (voxel) information, like surface and
volume, which are both influenced by the so-called partial volume
effect (Soret et al., 2007), and further characteristics derived from
this, like various descriptors of size (for example, longest axis,
spherical equivalent diameter) and shape (for example, aggre-
gated descriptors as sphericity or functional descriptors as spher-
ical harmonics).
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Besides destructive 3D methods like serial sectioning (Zhong
et al., 2019), a possible nondestructive 3D characterization
method is X-ray microtomography (micro-CT) which is able to
capture structural and textural details on the microscale. Here, a
series of 2D projection images is used to generate a full 3D repre-
sentation, a so-called reconstruction, of the sample volume within
the field of view (FOV). Micro-CT and setups with additional
optical magnification, so-called X-ray microscopes (XRM), have
become established laboratory methods in engineering sciences
over the last two decades (Stock, 2008; Maire & Withers, 2014).
The related application for particle characterization originally
comes from the field of geology (Carlson & Denison, 1992;
Cnudde & Boone, 2013) but is increasingly used for the analysis
of particulate and porous materials in mechanical process engi-
neering (Leißner et al., 2020). Depending on the selected particle
system, a reasonable analysis often requires a multiscale approach,
for example, for composite particles and/or particles the sizes of
which cover various length scales (Ditscherlein et al., 2020a). In

this pilot study, however, we restrict ourselves to single-phase par-
ticle systems with a relatively narrow particle size distribution, for
which the analysis can be performed without the correlation of
measurements on multiple length scales.

Working Areas for Particle-Discrete Image Data

The acquisition and usage of such data is driven by different
objectives (Schlüter et al., 2014; Bagheri & Bonadonna, 2016;
Cepuritis et al., 2017). In this section, we introduce, as an exam-
ple, a grouping of working areas from a particle technology per-
spective into five nondisjoint categories and showcase how these
working areas can synergize by using a particle-discrete database.
The grouping considered in the present paper consists of (i) a
sample preparation strategy, followed by (ii) image acquisition,
(iii) image processing, (iv) stochastic modeling of image data,
including their simulation to generate virtual image data,
so-called digital twins, and (v) numerical process modeling. We

Fig. 1. Logo from https://parrot.tu-freiberg.de.

Fig. 2. Possible strategies for the characterization of particle systems shown by the example of a soda-lime glass particle. A visualization of the full 3D description is
shown in the middle. Via sectioning or projection measurements 2D data of the particle is obtained (left). Alternatively, 2D microscopy provides top views of the
particle, depending on its orientation (right).
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believe that close collaborations between various research groups
across disciplines regarding their particle-discrete datasets is an
important requirement to use synergy effects in all five working
areas (i)–(v) mentioned above. In particular, we believe that the
development of a multidisciplinary database is an important pre-
requisite for many future research activities.

Table 1 summarizes some aspects of data exchange between
the working areas (i)–(v) within this database, distinguishing
between write accesses (database filling) and read accesses (data-
base query). More precisely, the PARROT database will contain
metadata on sample preparation procedures (working area (i))
which can depend on the particle system under consideration
(including, for example, dry dispersion or extraction only to
avoid fragmentation) and the required analysis volume (ideally
matching the FOV of the measurement) (Ditscherlein et al.,
2020a, 2020b). In addition, the metadata of the image acquisition
(working area (ii)) can provide indications of possible artifacts
(Boas & Fleischmann, 2012) in the subsequent image processing
of the image stack which is uploaded to an external archive
(OpARA) and linked via a digital object identifier (DOI) to the
PARROT database. For a quantitative analysis of this kind of
data (working area (iii)), image processing steps have to be per-
formed, for example, the automated extraction of objects of interest
which are, in the context of the present paper, individual particles
(Beucher & Meyer, 1993; Burger & Burge, 2016; Westhoff et al.,
2017; Ditscherlein et al., 2020a). The resulting segmented version
of tomographic image data is also uploaded to OpARA and linked
via DOI to the PARROT database. Note that image segmentation
using conventional image processing algorithms can be a nontrivial
task, which often requires careful calibration of algorithms. This
issue can be avoided using methods from machine learning (for
example, convolutional neural networks) which have proven their
usefulness for image processing tasks in numerous applications
(Furat et al., 2018, 2019b; Jiang et al., 2020; Furat et al., 2021a).
However, in order to train such methods for image segmentation
tasks, pairs of raw data and segmented data are required, where
the latter can be difficult to obtain. The PARROT database provides
for each tomogram the corresponding segmented 3D image which
amounts to thousands of segmented slices. Since recent neural net-
works can already be trained with just a few slices (Çiçek et al.,
2016; Furat et al., 2021a), users of machine learning methods can
access an adequate amount of data to train and test their models.

From segmented image data, individual particles can be
extracted for the computation of particle characteristics which
describe their size, shape, and texture (Burger & Burge, 2016;
Furat et al., 2018), see Appendix A-2 of the Supplementary
Material. Such particle-discrete vectors of characteristics will be
made available within the PARROT database for modeling pur-
poses (working area (iv)). To begin with, particle systems can
be efficiently characterized by modeling the distribution of indi-
vidual particle characteristics using univariate parametric proba-
bility distributions (Johnson et al., 1994, 1995). Moreover, the
particle-discrete vectors of characteristics allow for the modeling
of multivariate distributions which capture the correlation struc-
ture of considered characteristics (Ditscherlein et al., 2020a;
Furat et al., 2019a), see Appendix A-2 of the Supplementary
Material. Besides this, the segmented tomographic image data
can be used to calibrate stochastic geometry models. They can
be utilized to generate virtual particle systems, so-called digital
twins (Prifling et al., 2019; Furat et al., 2021b), which will be
made available within the PARROT database in the future.
Finally, both segmented and virtual 3D particles within the data-
base can be used for numerical modeling (working area (v)) to
compute process-related particle characteristics, like, for example,
their settling velocity (Trunk et al., 2018), see Appendix A-3 of
the Supplementary Material. Here, both, the immersed boundary
method (Uhlmann, 2005) and the lattice Boltzmann method
(Trunk et al., 2021) can be utilized to finally assign these addi-
tional characteristics to the corresponding particles within the
PARROT database—thus, enabling the analysis of structure–
property relationships (Stenzel et al., 2017; Neumann et al.,
2020; Prifling et al., 2021). With the combination of working
areas (i)–(v), a holistic approach to the investigation of such 3D
data is provided, from acquisition of image data through their
processing and analysis to modeling. Furthermore, the workflow
is fully reproducible as all data is made available in open access.

Some Practical Use Cases

Designing type, structure and content of a database is a crucial
step and can be done in two ways. The first one is to focus on
the data to create a system that can manage it optimally.
Relevant key parameters are storage space, minimum redundan-
cies, and retrieval times. The second approach is to focus on
the users and the needs for their daily workflows. Users have spe-
cific ideas regarding their requirements for the database—
so-called use cases (for example, “analysis of particles resulting
from a specific comminution process,” “surface characterization
of dolomite particles with a minimum voxel volume of 10,000,”
etc.). Taking these use cases into account, the data handling
becomes intuitive in a certain way. This will be called the user-
driven approach. In reality, both approaches go hand in hand
and have to be balanced as well as possible. Of course, daily
work shows that the working areas presented in the previous sec-
tion cannot be considered completely independent of each other.
Often methods from different working areas are required for the
analysis of such image data of particle systems. In the following,
we will consider three practical use cases which utilize methods
from the introduced working areas and deal, on the basis of a
common data source, with different tasks: Acquisition and pre-
processing, statistical analysis and multivariate parametric model-
ing, and numerical process modeling. Note that the use cases
illustrate possible applications of the database from the view of
particle technology. Nonetheless, applications of further scientific

Table 1. Working Areas with Corresponding Examples for Database Filling and
Query.

Working Area Database Filling Database Query

(i) Sample
preparation

Metadata –

(ii) Image
acquisition

Metadata and
tomographic image
stack

–

(iii) Image
processing

Metadata and
segmented image
stack, 3D particles

Tomographic
image stack

(iv) Stochastic
modeling

Metadata and
statistical
characteristics, virtual
particles

Segmented
image stack

(v) Numerical
modeling

Metadata and model
characteristics

3D particles
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fields such as geoscience, materials science, or biology that could
benefit from such a database are conceivable. For reasons of space,
the use cases are only briefly introduced in this paper. A detailed
discussion can be found in Appendix A of the Supplementary
Material.

Acquisition, Preprocessing, and Analysis of 3D Image Data
The acquisition and analysis of 3D particle-discrete data is the key
to obtain valid results regarding the distribution of particle
descriptors, especially in the case of irregularly shaped particles.
The analysis of such particle systems is described several times
in the literature (Cnudde & Boone, 2013). The combination of
experimental process engineering with digital computer-based
methods helps to predict the behavior of process sequences and
their results (Dong et al., 2009; Lin et al., 2010; Yu et al., 2018).
For example, in cake-forming filtration (Ruth et al., 1933), the
correlation of (measured distributed) particle size and shape char-
acteristics with (measured distributed) descriptors of the 3D mor-
phology of the pore space in the filter cake provides information
that can be used to predict process behavior (for example, filter
cake dewatering and washing). Querying the database allows
users to generate artificial cake structures. These synthetic struc-
tures can be used for a large number of simulations, which in
turn must be validated by individual experiments. Thus, it is
not a replacement of the old methodology, but a significant exten-
sion. The case study presented in Appendix A-1 of the
Supplementary Material is intended to show how the first step
toward this approach is taken using the PARROT database.

Statistical Analysis and Multivariate Parametric Modeling of 3D
Image Data
Tomographic image data can provide detailed insight into the 3D
microstructure of materials (Maire & Withers, 2014) like, for
example, for investigating the active and pore phase of cathode
materials (Prifling et al., 2019) or the grain boundary network
of polycrystalline materials (Furat et al., 2021a). However, in
order to quantitatively investigate tomographic image data, alter-
native (parametric) representations of this data have to be derived
which are easier to interpret. With respect to image data of par-
ticle systems, a common approach is the characterization via par-
ticle size distributions. This can be done by fitting parametric
probability distributions to particle sizes (i.e., volume-equivalent
spherical diameters) computed for segmented particles (Handl
et al., 2017; Ditscherlein et al., 2020b). However, since tomo-
graphic image data gives access to (possibly thousands of) parti-
cle-discrete vectors of characteristics, a more informative and
efficient approach is to parametrically model the distribution of
characteristics in order to describe the particle system. Note
that modeling each considered characteristic individually using
univariate parametric distributions does not adequately describe
the information yielded by the vectors of characteristics. More
precisely, univariate distributions do not provide any information
on whether and how particle characteristics are correlated with
each other (for example, if larger particles are more spherically
shaped, etc.). Therefore, we deploy multivariate parametric distri-
butions for modeling the joint distribution of characteristics—
thus, capturing the correlation between characteristics (Furat
et al., 2019a, 2021a; Ditscherlein et al., 2020a). Then, the consid-
ered particle system can be described by just a few model param-
eters. To illustrate this, we give a possible application of the
PARROT database in Appendix A-2 of the Supplementary
Material, where we use particle-discrete (vectorial) data to fit

multivariate probability distributions to pairs of characteristics
which efficiently characterize systems of particles.

Numerical Process Modeling Based on 3D Image Data
Numerical process modeling is a useful tool to investigate pro-
cesses or parts of them, which are not easily accessible for mea-
surement devices or require costly equipment for examination
(Champion et al., 2007; Kashiwaya et al., 2012). In the literature,
many methods and approaches for the simulation of particle
behavior have been proposed (Zhu et al., 2008). To keep the
required amount of computations at a reasonable level, usually
some assumptions and simplifications, especially concerning geo-
metrical particle characteristics, have to be made. However, with
increasing computational power, simulations can depict more
and more aspects of reality. The declining need for simplifications
also leads to a growing need for data. For instance, in particle sim-
ulations, it is now possible to describe the real surface of a particle
instead of using a spherical approximation. This, however,
requires detailed 3D particle datasets with a reasonably exact
surface description and an efficient surface representation,
which is compatible with currently available simulation
software. Users of the PARROT database can download numerous
systems of particles as input for numerical simulations by varia-
tion of their search-query parameters, see Appendix A-3 of the
Supplementary Material. For example, this enables the correlation
of geometrical properties of the particle system (for example, mul-
tivariate distribution of size/shape characteristics) with physical
properties, see Stenzel et al. (2017) and Neumann et al. (2020).

Graphical User Interface

We believe that particle-discrete data is only valuable in combina-
tion with metadata which specifies the imaged material, the mea-
surement settings and the performed image processing steps. As
such, these should all be provided within the PARROT database
and usable as search criteria. The user should be guided through
the search and download processes to understand the data in suf-
ficient detail, because otherwise the risk of downloading inappro-
priate or incomplete data is high. For this reason, the PARROT
database is equipped with a web-based graphical user interface
(GUI). Input filters can be selected by the user in order to subse-
quently obtain information on the filtered particle systems and
the relevant raw image data. The data corresponding to the search
results can be downloaded in a compressed format or, in the case
of raw image data, is linked to an external database. Preview
images in 2D and 3D illustrate the search results and give a
first impression of the data. A short manual explains important
terms and provides additional information and is provided on
the PARROT website https://parrot.tu-freiberg.de.

Outline

The rest of this paper is structured as follows. In section
“Materials and Methods,” we introduce some basic methods
and give a short overview of the particle systems considered in
this paper. In section “Results and Discussion,” we explain
some components of the database system and the GUI. This infra-
structure is used to query data for the introduced three practical
examples of use cases, which are discussed in detail in
Appendix A of the Supplementary Material. Section
“Conclusion and Outlook” concludes, providing possible
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guidance for optimizing and maintaining the database as well as
scalability beyond the scope of this pilot study.

Note that in this study, we measured six different particle sys-
tems of various shapes, from spherical (soda-lime glass particles)
to sphere-like (aluminum oxide, dolomite, limestone, and quartz)
and clearly nonspherical ones (mica), appropriate examples of
particles can be found in Appendix B of the Supplementary
Material. We imported the segmented particle-discrete data and
related characteristics into the PARROT database. Using the data-
base allows users to filter and query these datasets with respect to
distributed characteristics according to specific criteria and, if
necessary, match them with corresponding other measurement
data. Since the database allows free access worldwide, this is
also possible for interested parties who do not yet possess the nec-
essary measurement equipment.

Materials and Methods

Description of Particle Systems

All six particle systems investigated in this study have practical rel-
evance for numerous scientific questions regarding size and shape
distributions of particles, their arrangement in the bulk (for exam-
ple, packed particle bed comminution) and the resulting pore net-
work for fluid flow in filtration experiments. Further information
about the characteristics of these particle systems is given in
Table 2, whereas examples of SEM images are shown in Figure 3.

Tomographic Measurements Using X-Ray Microscopy

The X-ray microscope (type Xradia VERSA 510 from ZEISS) used
in this study has a two step magnification. X-ray photons are

Table 2. Characteristics of the Six Particle Systems Considered in This Study.

Composition Manufacturer Manufacturing Process Size Range

Aluminum-oxide Al2O3 ALMATIS Crushing 55–200 mm

Dolomite Carbonate Wünschendorfer Dolomitwerk Calcination and crushing 90–200 mm

Soda-lime glass Amorphous silicate Sigmund Lindner Dry spraying 150–300 mm

Limestone carbonate GEOMIN Erzgeb. Kalkwerke Dry milling 55–200 mm

Mica Silicate Zinnwald deposit Comminution and magnet. sep. 90–300 mm

Quartz Silicate Strobel Quarzsand Crushing <200 mm

Fig. 3. SEM images of the particle systems considered in this study. The scale bar refers to all systems.
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generated in a polychromatic source and projected as a cone beam
onto a scintillator screen. This geometrically magnified image is
transformed within a scintillating material into photons of visual
light (VIS) according to the incoming intensity and energy regime
of the X-ray photons, magnified a second time by VIS optical
lenses (in this study, we use a magnification factor of four), and
projected on a CCD flat panel detector. One tomographic mea-
surement consists of a series of projection images captured over
an angular range of at least 180° (in this study 360°), which is
mathematically reconstructed into a 3D representative, the
so-called tomogram (Buzug, 2008). Artifacts and measurement
errors related to tomography will not be discussed here.
Interested readers are referred to the literature (Davis & Elliott,
2006; Boas & Fleischmann, 2012). All relevant acquisition param-
eters can be found in Appendix E of the Supplementary Material.

The starting point for the measurement is to use a well-
dispersed particle sample that has to be embedded into a low
X-ray attenuating matrix to avoid undesirable motion during
the exposure process in the tomography system. Here, the main
focus is on a statistically representative sample with sufficiently
large space between individual particles to support the image seg-
mentation workflow (Ditscherlein et al., 2020b, 2020c).

Image Segmentation Strategy

To present an example of workflow in an engineering application,
we limited ourselves to a simple image segmentation problem
using single-threshold binarization with ImageJ (Rueden et al.,
2017), described in detail in Appendix C of the Supplementary
Material. This strategy works well for nearly spherical particles
which are homogeneously distributed within the sample volume.
Since this is not always the case in reality, we discover two error
causing effects which are well known from image processing: (i)
There are particles which are touching each other although they
are not physically connected. In this case, the segmentation step
(watershed) is not able to separate the particles from each other
because of the limited voxel resolution that significantly increases
the so-called partial volume effect (PVE; Soret et al., 2007), that is,
they are under-segmented. This is the dominant effect, since it
affects at least two or more particles in each case. (ii) There are
particles which are clearly nonspherical and elongated in one
(fibers) or two spatial dimensions (plates). Many conventional
segmentation algorithms work similarly in all spatial directions
and thus lead to an undesirable artificial splitting along the

longest particle dimension, so-called over-segmentation which
can be avoided, for example, by utilizing neural networks for seg-
menting (Ronneberger et al., 2015; He et al., 2017) or post-
processing (Furat et al., 2018). However, this is a minor effect
since it affects only one particle in each case (which is then erro-
neously decomposed into a certain number of fragments). Since
both, over- and under-segmentation, alter the particle size and
shape significantly, such datasets must not be imported into the
database. For the initial datasets in the PARROT database, this
was realized by manual sorting to provide reliable datasets.
Applied to a very large number of samples with a significantly
larger number of particles beyond this pilot study, this procedure
needs to be replaced by an automatism that is reliable and offers a
possibility to evaluate the quality of an automatic segmentation in
order to compare different procedures if necessary. Examples of
correctly segmented and discarded particles can be found in
Appendix B, whereas the implementation of the segmentation
algorithm is given in Appendix D of the Supplementary
Material. In particular, the example of mica shows that it is not
always obvious to decide which image regions belong to an indi-
vidual particle. Furthermore, in the case of layered minerals,
which can delaminate already during sample preparation, particle
segmentation can be difficult and not straightforward. This is the
reason why it is absolutely necessary to know the particle system’s
specialities (metadata) to understand possible unexpected effects
when dealing with the data.

Relational Database

Overcome the Large Table Approach
When dealing with datasets, a common approach is utilizing a
list/table of values (Fig. 4a). This makes sense as long as all
data is part of the same aggregation level (Fig. 4b). If, in contrast,
there is data which exists at higher level (meta-level�metadata),
for example, measurement parameters that are constant for a large
number of measurement points (redundant data), the consistency
of the database can be compromised. The more parameters are
added, the larger this table will get. Searching inside this structure
will quickly become confusing and ineffective. In addition, the
later addition of new parameters to existing datasets using this
structure can only be done with great difficulty. To create a
valid database for a large number of particles, which has been
the aim in the design of the PARROT database, such redundan-
cies have to be reduced and consistency has to be improved.

Fig. 4. (a) Different levels of aggregation (b) causes lots of redundancies in a one-table-solution which can be overcome by (c) a relational database approach
including the connection (a so-called join) with proper key indices.
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One way to this was proposed in 1970 as “A relational model of
data for large shared data banks” (Codd, 1970), today generally
referred to as relational database.

Database Structure
A relational database compensates for inconsistencies and redun-
dancies by structuring the data according to their aggregation
level (see Fig. 4b) and, optimally, within functional groups
(Codd, 1982; Paredaens et al., 1989). For example, all data related
to an experiment are inserted into a separate experiments table,
which is much smaller than the particle table containing parti-
cle-discrete data for all particles. On the next aggregation level,
there may be data regarding reconstruction and measurement set-
tings or aggregated particle characteristics. This structuring can be
done in several steps and is called normalization. A connection
between tables is established by so-called key-columns. Every
table has a primary key column which has a unique value for
every row and can be inserted as a foreign key into another
table to establish the relation between both, a so-called join.
Joins can be used to link data according to the set theory
known from mathematics, for example, datasets belonging to
tables A and B at the same time (inner join) or datasets, which
only belong to table A but not necessarily to B (left join), etc.
This enables us to connect the PARROT database with other rela-
tional databases, which contain, for example, results from a laser
diffraction measurement of the same particle system, assuming
that there are corresponding matching unique keys in both data-
bases. Figure 5 shows the structure of the PARROT database
including tables for data and metadata. External connections
and automated functionalities are described in the lower left leg-
end. The database itself is embedded in an overall structure that
provides all necessary software for database manipulation. This
structure is referred to as database management system
(DBMS). Besides storing and retrieving data, the system includes

an appropriate security environment. For the PARROT database,
we chose MariaDB (Wood, 2018), a widely used community-
developed fork of the well-known MySQL DBMS. Its lean design
makes it easy to set up for smaller projects, but it is still fully
equipped to potentially upscale the DBMS in terms of load and
storage. For this pilot study, we use a virtual Windows server
with internet access, 1 TB hard disk for the DBMS and the file
system, 4 GB RAM and a two core CPU at 2.4 GHz.

The Importance of Metadata
Not knowing the related metadata to our datasets is like knowing
the alphabetic letters without their syntax, context, and intercon-
nection. For our case, this means: How is data to be interpreted?
Which data types and ranges of values are present? Is the actual
data in a raw format or has processing already been performed?
In the sense of a holistic view, metadata is essential in order to
be able to use findings for specific process optimization. In this
context, metadata consists of parameters regarding experiment
(pressure, volume flow), measurement (acceleration voltage,
exposure time), image analysis (segmentation algorithm) or mod-
eling (model type, basic assumptions). To ensure valid metadata,
acquisition should be done automatically whenever possible, for
example by using automated extraction from equipment log-files.
The integrity and consistency of this type of data is essential for
successful data analysis. Within the PARROT database, the
import is realized by automated importing routines that are
adapted to tab-separated text files suitable to serve as a possible
candidate for future interface creation. Since interface implemen-
tation is often non-trivial and very device-specific, this general
method was chosen as the starting point for the pilot study.
Note that the currently available metadata does not claim to be
complete. For the pilot study, we have selected the most relevant
ones for us at the moment. However, the structure allows further
criteria to be added without difficulty.

Fig. 5. Structure of the relational database: Starting with (a) the tomographic data that is (b) stored within an online repository and (c) divided into particle-dis-
crete datasets that are (d) stored in a local file system. After import, the database contains (e) primary data and (f) related metadata.
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Storage Partitioning
Grouped by memory size, the database holds three general types
of data. The first type consists of alphanumeric characters in
binary format physically stored within the database, typically allo-
cating only a very small amount of disk space—in our case for
6.000 particles approx. 3 MB. The second type concerns
ASCII-files containing particle-discrete data obtained from seg-
mented voxelized image data. The required disk space for the ini-
tial dataset of 6.000 particles is approx. 40 GB. This data does not
need to be indexed but has to be quickly accessible for compres-
sion and downloading. It is thus stored within a local file-system
and linked to the database. Provided database-internal special
data types, so-called Binary Large Objects (BLOB), would unnec-
essarily expand the database structure and behave rather unfavor-
ably with regard to efficient resource management by the DBMS.
The third type concerns the raw tomography data, consisting of
the reconstructed single channel TIFF stacks (for binning 2
with 1024× 1024 pixel) and their segmented counterparts. The
required disk space for one particle system in compressed format
is approx. 2 GB (in total, 12 GB for all six examples). Here, it
would also be possible to store the files in the local file system.
With regard to scaling the application and high-performance
data access, an external solution was preferred. Note that TU
Dresden together with TU Bergakademie Freiberg provide an
open access repository and archive (OpARA) for storing scientific
datasets for a worldwide access via digital object identifier (DOI),
which allows linking this external storage via the DOI primary key
to the related dataset. Another advantage of this method is that
individual datasets can also be directly referenced in the context
of scientific publications. The backup of the data is guaranteed
by the storage management system of TU Bergakademie Freiberg.

Data Access
Under the assumption of a web-based data access, there are two
general design strategies for building the GUI. The data would
also be accessible via text input, but this would raise the barrier
to widespread use. A GUI should give an intuitive way for select-
ing and retrieving the data. One way would be to design separate
web-pages for each use-case. This approach would get users to
their destination, that is, the downloading of filtered data, in the
fastest way. However, if important filter substeps are skipped,
there is a risk of unintentional virtual mixing of particle-discrete
data from different measurements, which mostly makes no sense
either in image analysis or in modeling from the application point
of view. The second approach is to “guide” all users along the
same steps: (i) pre-filtering related to material, measurement,
and characteristic, (ii) selecting the particle system; (iii) selecting
the related tomographic dataset, and (iv) downloading selected
data and metadata. Note that steps (i)–(iv) are all accompanied
by a deliberate filtering of the data. This means that in each sub-
sequent step, only the data which match the selected filter crite-
rion are displayed. The filter selection is cached in each step
and automatically saved as a text file in the compressed
(ZIP-format) download folder, so that it can also be reconstructed
afterwards how the filter result was obtained, that is, also by other
users who did not query the data themselves.

Results and Discussion

The use cases already introduced in the section “Some practical
use cases” are embedded into three different research projects
with the following titles: (i) Development of process models

based on 3D information about the multiphase processes in the
pore space of a filter cake (funded by DFG, project number: PE
1160/23-1), (ii) Stochastic modeling of multidimensional
particle properties with parametric copulas for the investigation
of microstructure effects on the fractionation of fine particle
systems (funded by DFG through project Z2 of SPP 2045,
project number: SCHM 997/27-2), (iii) Two-scale approach for
the simulation of multidimensional fractionation of fine particles
(funded by DFG through project Z4 of SPP 2045, project number:
KR 4259/8-2). For a detailed discussion of all three use cases, the
interested reader is referred to Appendix A of the Supplementary
Material.

The database itself has been developed in project Z1 of SPP
2045 (project number: PE 1160/22-2) which, in conjunction
with projects Z2 and Z4 mentioned above, represents the central
part of the SPP 2045 (DFG project number: 313858373) dealing
with multidimensional and correlative characterization of particle
systems. Further information regarding SPP 2045, including
detailed project descriptions, is available online via https://tu-frei-
berg.de/fakult4/mvtat/SPP2045.

Design of the Database System

Due to the broad scope of the topic, not all components of the
database can be explained in detail. Since the complete source
code of the GUI and the database structure are available in
open access, only the most important points will be discussed
here.

Data Management
The workflow from gathering data, their analysis, modeling, sim-
ulation, and visualization is referred to as data management (Gray
et al., 2005). Perhaps one of the most important aspects that com-
pletes this process is data sharing. Only when this is possible, that
is, when the documentation and provision of metadata has pro-
gressed to the point where other workgroups can use the data
without difficulty, has the potential been fully exploited. We
believe that our approach in implementing the PARROT database
is a first step toward reaching this goal on a small scale. It com-
bines fast data access with reasonable storage management and
is thus suitable for scientific institutions which do not have suffi-
cient investment funds at their disposal. Open access is an impor-
tant point in this context. The storage in an online repository (in
our case OpARA) only represents an outsourcing of the resources
in a broader sense; provided with metadata, an additional added
value is generated here, which also benefits the scientific
community.

The goal of this pilot study was to develop a working system
without requiring a major investment of money or personal
resources. We use the noncommercial standard Windows pro-
gramming environment, called the .NET framework. Within
this framework, we use Microsoft Visual Studio with ASP.NET
as a programming development environment. The provided
model-view-controller architecture (MVC; Leff & Rayfield,
2001) allows a simple set-up of the system. An important aspect
in this regard is the language support for querying the database.
In most cases, the structured query language (SQL) is used to
communicate with the database. Just as in human languages,
there are many ways to use this language. Complicated query
structures can sometimes produce the same results as simply for-
mulated ones. For an efficient way of using this language, we use a
common tool for object-relational mapping (ORM), called
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Dapper. This architecture allows easy linking of the input from
the web interface to the database, is highly performant and secure
against unintentional database manipulation (injections).

Performance
Normally, the performance of a database system is monitored by
tools of the DBMS under real conditions during operation. To
give an example of such a performance analysis, certain tests
with high load were simulated by creating duplicates of the orig-
inal data in the pilot system.

As a performance measure, we use an SQL query which selects
datasets based on distinct bounds specified by the user. As can be
seen in Figure 6, querying approximately 7 million particles with
unique voxel volume out of a total of 10 million lasts approxi-
mately 6 s. The query time of the DBMS itself is therefore in all
likelihood not a problem even with very extensive operations.
Much more important is the interaction of the DBMS, web server
and storage, see section “Maintenance and scalability”.

Maintenance and Scalability
Maintenance is part of the administrative activities that are man-
datory for a database system in order to guarantee stability and
performance (Mullins, 2002). In the specific example of the
PARROT database, this mainly includes the monitoring of data-
base parameters. For example, the load caused by several concur-
rent database accesses is checked. Since all the individual
components (web server, database, storage) interact in a complex
way here, it is difficult to predict the real behavior in detail. The
administrator must, therefore, statistically evaluate database
accesses and optimally balance resources. The system is equipped
in such a way that no problems are seen here for the initial phase.
It is important that suitable limit values are set in the monitoring
tool to alert of bottlenecks in advance, so that the system can be
adjusted accordingly at an early stage. Since the system is located
on a virtual server, resources can be added quickly after the

shortest downtime and can thus be optimally adapted to the
actual requirements.

The used database management system (MariaDB; Tongkaw &
Tongkaw, 2016) can be scaled up in data volume, query intensity,
and performance by distributing it over a computing cluster,
which is commonly known as a “Max Scale” approach
(Zaslavskiy et al., 2016). The bottleneck here is rather the web
server, which has to handle the parallel accesses. Since no query
intensities comparable to other widely used web applications are
to be expected in the present case, this is seen as less critical.
However, the system should always have enough resources avail-
able and, if possible, be designed so that it never runs at full
load. As discussed above, this monitoring also falls within the
scope of the administrative activities in the pilot phase.

To optimize data and metadata entry for very large datasets,
the data import described above would need to be done automat-
ically from a central location. Typically, this is realized by
so-called data collectors. These software tools are executed by
the server, usually at fixed time intervals, to check whether
there is new data in the file system. If this is the case, the corre-
sponding files are read out and imported into the database with
corresponding SQL statements, or file paths are linked.

Finally, it is important to emphasize that the general design of
the system is critical at this point too. Is there an expert panel that
monitors the submission of new datasets or are there mechanisms
that automatically check user uploads? How and according to
which criteria this can be done is a large complex of topics that
cannot be dealt with in the present paper.

Conclusion and Outlook

A complete three-dimensional discrete description of particulate
systems is the basis for a wide range of applications from tradi-
tional engineering through comprehensive image analysis and
microstructure modeling to process modeling. Networking at

Fig. 6. Performance test using SQL query time as a speed measure over artificially generated discrete particle datasets. Note that unique particle volumes from the
total dataset are queried (initially: approx. 6,000 maximum: 10 million particles).
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the data-level exploits synergies and promotes the exchange of
experience. As this study shows, this can be implemented most
efficiently by using a relational particle database. Thus, all three
use cases presented briefly in this paper and detailed in
Appendix A of the Supplementary Material give the possibility
to download data according to their requirements. Guided by a
simple online web-based graphical user interface, basic under-
standing of particulate systems is supported, which minimizes
potential content errors, like unintentional virtual mixing of dif-
ferent particulate systems.

Note again that this study is not a software package or pro-
gram library, but rather proposal for a solution that has emerged
from the networked work of our research group. In the next step
of the project, further particle systems will be added. Moreover,
the aim is to make high-resolution image data of individual par-
ticles available. Cross-linking between other research groups
would also be conceivable to increase the available measurement
time, for example, particle systems could be exchanged and
scanned during potential equipment standby times. In order to
implement this as efficiently as possible and also to be able to
comply with the growing demands on the system, the infrastruc-
ture and administration would have to be transferred to a superior
research institution like the National Research Data Infrastructure
(NFDI), funded by the German Research Foundation (DFG).

The authors look forward to a lively use of the PARROT data-
base (https://parrot.tu-freiberg.de) and would be grateful for sug-
gestions for improvement and user feedback.

Data availability

The PARROT database is accessible via https://parrot.tu-freiberg.de.
The complete source code is published in the github repository
https://github.com/ps-igel/OPD under the GNU General Public
License v3.0. Complete raw data (reconstructed and segmented
TIFF stacks) of all particle systems considered in this study is avail-
able by open access via the OpARA online repository of TU
Dresden and TU Bergakademie Freiberg via http://dx.doi.org/10.
25532/OPARA-104 (dolomite), -105 (Al2O3), -106 (quartz), -107
(mica), -108 (limestone), and -109 (soda-lime glass). All data is
explicitly intended for free use and should help to provide a
good starting point for the investigation of similar systems. The
authors hope for a vivid exchange of experiences in the future.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S143192762101391X.
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Appendix A: Three Examples of Use Cases

In this section we discuss three scientific use cases, which have been already introduced
before in Section 1.3 of the main manuscript text and which are directly or indirectly
dealing with particle-discrete datasets queried from the PARROT database. The use
cases are embedded into three different research projects with the following titles: (i)
Development of process models based on 3D information about the multiphase processes
in the pore space of a filter cake (funded by DFG, project number: PE 1160/23-1), (ii)
Stochastic modeling of multidimensional particle properties with parametric copulas for
the investigation of microstructure effects on the fractionation of fine particle systems
(funded by DFG through project Z2 of SPP 2045, project number: SCHM 997/27-2),(iii)
Two-scale approach for the simulation of multidimensional fractionation of fine particles
(funded by DFG through project Z4 of SPP 2045, project number: KR 4259/8-2).

A-1: Acquisition, Preprocessing and Analysis of 3D Image Data

This use case refers to results obtained in the framework of project (i) mentioned above,
dealing with multiphase processes in the pore space of a filter cake which is build from
particulate powders. Here, a pore is defined as interconnected void space between par-
ticles within a bulk. In contrast to the solid phase, a pore is a compact disperse prop-
erty (Schubert, 1982). Often, a pore is defined as concave chamber between several
particles, connected by constrictions, called pore throats. At these points, particles
touch or become very close to each other. Of course, in general, the distribution of a
particle characteristic depends on the kind of the shape or size characteristic considered
in each case. In practice, often univariate distributions are determined of (indepen-
dently measured) single particle characteristics, which, in some cases, can be combined
to multivariate distributions of vectors of particle characteristics by applying suitable
mathematical algorithms (Prifling et al., 2019; Furat et al., 2021b). Moreover, when
used in process models like cake filtration, distributed information is often reduced to
an aggregated numerical value, which is only partially able to capture the distributed
nature of particle or pore space characteristics.

Cake Filtration. One possible approach to determine the 3D morphology of filter
cakes non-destructively and non-intrusively (by in-situ filtration experiments) is given
by the utilization of XRM, where the procedure to generate such filter cake structures
is to mechanically classify particles from an initial particle system (here Al2O3), i.e., to
divide them into different subsets such that each subset exhibits a narrow particle size
distribution. These subsets are then used for filtration experiments, where the resulting
filter cakes can be investigated with respect to the 3D morphology of their pore space.
Based on the experimental data, it is now possible to determine a correlation function
between discrete particle and pore space characteristics. However, the goal of future
research is to replace this very time-consuming procedure by considering artificially
generated particle subsets. For this purpose, the particulate powder (not the filter cake
structure itself) will be measured tomographically and the resulting particle-discrete
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data will be stored in the PARROT database. Then, by means of a filtered database
query, specific subsets can be virtually extracted from this simulated particle population,
i.e., the mechanical classification process is mimicked.

To achieve this medium-term goal, some preliminary work for conventionally classified
particle systems must be performed first to reveal fundamental relationships between the
used particle system and the resulting filter cake structure obtained in process engineer-
ing experiments. For this, we build several filter cakes from subsets of Al2O3 particles.
Here, the structure of the pore space, described by pore radii, numbers of contact points,
local tortuosity, and interconnected or isolated fluid volumes, as well as the correspond-
ing particle size and shape characteristics are relevant for a more detailed mechanistic
understanding of the micro-processes within the pore space (Löwer et al., 2020). All
measurement parameters are given in Table S2, where the reconstructed image stacks of
the filter cake structures can also be found.

Investigating Similarity Effects. We now investigate the question how the size dis-
tribution of Al2O3 particles influences the morphology of the pore space of corresponding
filter cakes. For that purpose, we use aero classifying (Turbo classifier TC-15, Nisshin
Engineering Inc.) to extract three particle systems with differently sized particles from
the Al2O3 sample, see Table S1 for the particle size ranges. From these small, medium
and large sized particle systems, subsamples of particles are taken for laser diffraction
measurements to obtain particle size distributions for the three considered particle sys-
tems, followed by the fitting of volume-weighted log-normal distributions to the particle
sizes, see Figure S1. Note that the declaration of the particle systems refers to the
average particle size (small, medium, large). However, the location and shape of the cor-
responding size distributions differ between the three considered particle systems. The
underlying distributions based on the raw data are shown in Figure S10.

More details on fitting the parameters of the log-normal distribution can be found in
Section , where the fact is used that its probability density is given by a simple formula,
see Formula (S3). The fitted volume-weighted probability densities q(small), q(medium), q(large) :
R→ [0,∞) for the particle sizes of the small, medium and large sized particle systems,
respectively, are visualized in Figure S1. Note that for the purpose of visual inspection
of self-similarity, Figure S1 shows normalized versions q̃ of the considered probability
densities q, which are given by

q̃(x) =
1

x50
q(x/x50) for all x ∈ R, (S1)

where x50 denotes the median of q. This procedure is widely described in the literature on
comminution processes(Andreasen, 1957; Rumpf, 1973; Venkataraman, 1988). Location
and scattering parameters of the log-normal fits are given in Table S1.

For each of the three particle systems, filtration experiments were performed and
the resulting filter cakes were imaged using XRM. In order to characterize the mor-
phology of the filter cakes’ pore spaces, the three XRM tomograms have been used to
determine the spherical contact distribution based on the maximum inscribed sphere
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approximation (Silin & Patzek, 2006). Then, volume-weighted log-normal distribu-
tions are fitted to model the pore size distributions. The fitted probability densities

q
(small)
pore , q

(medium)
pore , q

(large)
pore : R → [0,∞) for the pore sizes of filter cakes resulting from

filtration experiments with the small-, medium- and large-sized particle systems, respec-
tively, are visualized in Figure S1 and corresponding location and scattering of the fits
are given in Table S1. Using the three particle systems described above, we now in-
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Figure S1: Planar 2D slices of medium-, small- and large-sized particle systems (left
from top to bottom), with magnified details showing similar structures. Nor-
malised cumulative distribution functions and probability densities of particle
sizes for the three particle systems (right top) and their corresponding pore
sizes (right bottom).

vestigate the question of how the discrepancy between the particle size distribution of
two different particle systems transfer to the pore size distributions of the correspond-
ing filter cakes. As a discrepancy measure we consider a quantity based on the notion
of self-similarity. More precisely, the self-similarity measure (Klichowicz et al., 2014)
I(q(1), q(2)) of two probability densities q(1), q(2) : R→ [0,∞) is given by

I(q(1), q(2)) =
1

n

n∑

k=1

|q(1)(xk)− q(2)(xk)|, (S2)

where {x1, . . . , xn} is some set of support points x1, . . . , xn ∈ R.
Using Formula (S2) we computed the self-similarities I(q(small), q(medium)) and I(q(large),

q(medium)) of the particle size distributions of small and large sized particle systems with
respect to the medium sized particle system as a reference, see Table S1. For this, we
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used the percentiles x10, x16, x25, x50, x75, x84, x90 of q(medium) as support points in For-

mula (S2). Analogously, the values I(q
(small)
pore , q

(medium)
pore ) and I(q

(large)
pore , q

(medium)
pore ) of the

self-similarity measure for the pore size distributions of the corresponding filter cakes
have been computed, see Table S1.

The increase of the values of the self-similarity measure I presented in Table S1 indi-
cate that increasing deviations of particle size distributions from the reference particle
size distribution are reflected in the filter cake structures by increasing deviations of
the pore size distributions from the corresponding reference distribution. As soon as
experimental and tomographical data regarding the filtration experiments is available in
the database, the functionality of the latter can be used for a more comprehensive anal-
ysis to better understand the influence of the nature of particle systems on the resulting
morphology of the pore space within filter cakes. In particular, in addition to size charac-
teristics of particles and pores, further characteristics which describe their shape will be
considered. Then, using multivariate modeling, joint distributions of multidimensional
vectors of particle/pore characteristics can be considered, see Section for further details.
Moreover, using the tomographical data of the considered particle system, stochastic ge-
ometry models can be calibrated for the generation of artificial particles, so-called digital
twins (Prifling et al., 2019; Furat et al., 2021c), which also can be made available in the
database. This will enable the prediction of filter cake properties based on artificially
generated filter cakes, where only a small number of real filtration experiments will be
needed for model calibration. Thus, this would represent a significant advance in process
modeling.

A-2: Statistical Analysis and Multivariate Parametric Modeling of 3D
Image Data

This use case refers to results obtained in the framework of project (ii) mentioned above,
dealing with microstructure effects on the fractionation of fine particle systems. An
efficient way for describing complex voxelized particles in segmented image data is given
by size, shape and textural characteristics(Burger & Burge, 2016; Furat et al., 2021a)—a
selection of common particle characteristics can be directly accessed in the PARROT
database. Moreover, entire systems of particles can then be efficiently described by
fitting probability distributions to the particle characteristics extracted from image data.
Especially parametric probability distributions (e.g., log-normal and beta distributions)
are useful for modeling the univariate distribution of individual particle characteristics
since they can be fully specified by just a few parameters(Johnson et al., 1994, 1995).

Due to the characterization of particles in segmented image data by means of possibly
correlated particle characteristics, multivariate probability distributions which describe
the correlation structure of these characteristics are much more informative than univari-
ate distributions (Furat et al., 2019). Furthermore, it is possible to include characteristics
which describe physical properties of individual particles computed by simulations, see
Section , in order to investigate the influence of size and shape characteristics on physical
particle properties. To illustrate this, we provide an example for multivariate probabilis-
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tic modeling of particle characteristics by means of so-called copulas(Nelsen, 2006; Joe,
2014). More precisely, we fit a bivariate probability distribution to the two-dimensional
data vectors of volume-equivalent spherical diameter and sphericity of particles observed
in the aluminum oxide data set queried from the PARROT database. We start by mod-
eling univariate probability distributions for both diameter and sphericity. Then, in a
second step, a bivariate probability distribution is fitted, using a parametric copula, such
that its marginal distributions coincide with the previously fitted univariate distribu-
tions. Note that in this section we consider number-weighted probability densities which
we denote by f , instead of the volume-weighted versions considered in Section which
were denoted by q.
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Figure S2: Histogram (blue) and fitted parametric probability density (red) of the
volume-equivalent spherical diameter (a) and sphericity (b) of Al2O2 par-
ticles. Bivariate probability density of volume-equivalent spherical diameter
and sphericity of Al2O2 particles computed by means of kernel density esti-
mation (c) and the copula approach (d).

Parametric Modeling of Single Particle Characteristics. From the PARROT
database we can directly access tables of particle characteristics for any specified search
request. For example, for the n = 1571 particles segmented in the aluminum oxide
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dataset, we receive vectors (di, si) of the particle’s volume-equivalent spherical diame-
ter and sphericity for each i = 1, . . . , n. Then, in a next step, we can fit parametric
probability distributions to this data. It turns out that the log-normal distribution with
probability density fµ,σ : R→ [0,∞) given by

fµ,σ(d) =
1

d
√

2πσ2
exp
(
−(ln d− µ)2

2σ2

)
for each d > 0 (S3)

is a good choice for modeling the volume-equivalent spherical diameters d1, . . . , dn, where
the maximum likelihood method(Johnson et al., 1994) is used for computing optimal val-
ues of the model parameters µ ∈ R and σ > 0. Note that for selecting an adequate para-
metric probability distributions among multiple ones (e.g., normal, log-normal, gamma
distribution) the Akaike information criterion can be used. For more details on model
selection the reader is referred to Held & Sabanés Bové (2014). The resulting proba-
bility density fdiameter determined in this way is visualized in Figure S2a. Analogously,
a beta distribution(Johnson et al., 1995) is fitted to the sphericity data s1, . . . , sn—the
resulting probability density fsphericity depicted in Figure S2b.

Parametric Modeling of Pairs of Particle Characteristics. For modeling the
bivariate (joint) distribution of volume-equivalent spherical diameter and sphericity of
particles, we use parametric copulas which are bivariate distributions themselves, but
with special properties. More precisely, using a parametric copula density cθ : [0, 1] →
[0, 1] with some parameter θ ∈ R we can construct a bivariate probability density fθ :
R2 → [0,∞) such that

fθ(d, s) =fdiameter(d) fsphericity(s) cθ (Fdiameter(d), Fsphericity(s))

for all d > 0, s ∈ [0, 1],
(S4)

where Fdiameter, Fsphericity : R→ [0, 1] denote the cumulative distribution functions corre-
sponding to fdiameter and fsphericity, respectively(Nelsen, 2006). This construction of the
bivariate probability density fθ has the advantage that its marginal probability densities
coincide with the predetermined probability densities fdiameter and fsphericity. Similar
to the univariate case, there are numerous families of parametric copula densities, e.g.,
the Gumbel, Clayton and Ali-Mikhail-Haq copulas, the parameters of which can be fit-
ted using a maximum likelihood approach(Nelsen, 2006; Joe, 2014). In Figure S2d the
bivariate probability density fθ of volume-equivalent spherical diameter and sphericity
is visualized where a Ali-Mikhail-Haq copula has been fitted to the data (d1, s1), . . . ,
(dn, sn). This probability density is described by five parameters (the copula parameter
θ and two further parameters for each of the marginal distributions). For visual compar-
ison we also computed the bivariate probability density of volume-equivalent spherical
diameter and sphericity using a non-parametric approach, namely kernel density esti-
mation(Botev et al., 2010), see Figure S2c.
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A-3: Numerical Process Modeling Based on 3D Image Data

Finally, this use case refers to results obtained in the framework of project (iii) men-
tioned at the beginning of Appendix A, which deals with the simulation of particle
settling. Note that such a modeling approach is not limited to particles extracted from
an individual tomogram. More precisely, since the PARROT database allows users to
download virtual particles across different datasets according to their search query, such
multivariate modeling approaches allow them to efficiently characterize their custom
particle systems with relatively few parameters. Then, for example, these parameters
can be correlated with results obtained by numerical simulations (see Section 1.3.3 in
the main manuscript text) for investigating the influence of of the geometry of particles
within a particle systems on physical properties.

Surface-Resolved Simulations. In recent years, simulation methods mimicking the
dynamics of objects with complex (non-spherical) shapes became increasingly popular.
Prominent examples are the immersed boundary method (Uhlmann, 2005) and the ho-
mogenized lattice Boltzmann method (Trunk et al., 2021). The latter enables simulations
of the settling of arbitrarily shaped particles (Trunk et al., 2018), like that depicted in
Figure S3a. This allows to precisely track the settling path and velocity, an extract
of the simulation result at t = 0.235s is shown in Figure S3b. Both approaches have
been implemented in the open source software OpenLB (Krause et al., 2021) and vali-
dated by various benchmark studies. Similar to real laboratory experiments (Horowitz &
Williamson, 2010), where the settling regime of spheres and its dependence on Reynolds
number and density ratio was studied, the behavior of particles with other simple shapes
has been investigated too (Rahmani & Wachs, 2014; Shao et al., 2017). Regarding the
particle considered in the present paper, it is apparent from Figure S3c that the object
enters a state of constant rotation around its x-axis.

a b c

Figure S3: Surface representation of a particle retrieved from the PARROT database
used for simulation (a), magnitude of velocity around a particle settling under
gravity (b), angles with respect to x-, y- and z-axis over simulated time (c).
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Correlation of Particle Morphology and Physical Properties. The simulation
results of single settling particles can be used to quantify correlations between particle
characteristics describing their 3D morphology and physical properties, respectively, i.e.,
to deduce structure-property relationships, which can be utilized in further large-scale
simulations or to get a-priori assumptions for the processes under consideration. For
more than three decades attempts have been made to extend drag relationships derived
for spheres (Schiller & Naumann, 1933) to particles with more complex shapes (Ganser,
1993; Haider & Levenspiel, 1989). Due to its high complexity, this still is a topic of on-
going research, as shown by various new correlation proposals (Bagheri & Bonadonna,
2016; Hölzer & Sommerfeld, 2008). Note that the quality of structure-property relation-
ships and their range of applicability is mainly determined by the nature and quality
(e.g., voxel resolution) of datasets used to deduce them. However, most studies are based
on datasets obtained in real laboratory experiments which, usually, are not comprehen-
sive enough to validate correlations between particle characteristics describing their 3D
morphology and physical properties sufficiently well and, in addition, might not be ac-
cessible to other interested parties. On the other hand, a large particle database like
PARROT, not only containing various morphological particle characteristics but also
their surface representation, serves as basis for reproducible results which allows the
reliable quantification of structure-property relationships for a broad spectrum of par-
ticles. For example, selecting particles of a specific material or shape class enables the
creation of specified correlation models. This has been performed, e.g., for volcanic
pumice particles (Dioguardi & Mele, 2015; Dellino et al., 2005).

10

9 Publications 147



Appendix B: Exemplary Particles

a) Al2O3

b) oversegmented
c) undersegmented

Figure S4: a) Five correctly segmented Al2O3 particles from the PARROT database. b)
Two wrongly oversegmented Al2O3 particle fragments. c) Two examples of
undersegmented Al2O3 particle clusters. Over- and undersegmented particles
such as shown in b) and c) are not included in the PARROT database.
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a) glass

b) oversegmented

c) undersegmented

Figure S5: a) Six correctly segmented glass particles from the PARROT database. b)
Three wrongly oversegmented glass particle fragments. c) Two examples of
undersegmented glass particle clusters. Over- and undersegmented particles
such as shown in b) and c) are not included in the PARROT database.
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a) dolomite

b) oversegmented

c) undersegmented

Figure S6: a) Four correctly segmented dolimite particles from the PARROT database.
b) Three wrongly oversegmented dolomite particle fragments. c) Two ex-
amples of undersegmented dolomite particle clusters. Over- and underseg-
mented particles such as shown in b) and c) are not included in the PARROT
database.
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a) limestone

b) oversegmented

c) undersegmented

Figure S7: a) Five correctly segmented limestone particles from the PARROT database.
b) One wrongly oversegmented limestone particle fragment. c) Two exam-
ples of undersegmented limestone particle clusters. Over- and underseg-
mented particles such as shown in b) and c) are not included in the PARROT
database.
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a) mica

b) oversegmented

c) undersegmented

Figure S8: a) Three correctly segmented mica particles from the PARROT database. b)
Three wrongly oversegmented mica particle fragments. c) Three examples of
undersegmented mica particle clusters. Over- and undersegmented particles
such as shown in b) and c) are not included in the PARROT database.
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a) quartz

b) oversegmented
c) undersegmented

Figure S9: a) Four correctly segmented quartz particles from the PARROT database. b)
Two wrongly oversegmented quartz particle fragments. c) Two examples of
undersegmented quartz particle clusters. Over- and undersegmented particles
such as shown in b) and c) are not included in the PARROT database.
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Appendix C: ImageJ segmentation workflow

1. Histogram equalization (0.35 %)

2. Non-local means denoising (auto sigma)

3. Unsharp masking (radius 1; mask weight 0.3)

4. Despeckle

5. Unsharp masking (radius 1; mask weight 0.3)

6. Despeckle

7. Local automated threshold (Bernsen; radius 20 to 35 depending on the particle
system)

8. 3D Watershed Split (radius 12); 3D object counter)

Appendix D: ImageJ macro for particle extraction

1 // ===== CONFIGURATION =======
2 outputFolder = getD i r e c to ry ( ” S e l e c t output d i r e c t o r y f o r ex t rac t ed

p a r t i c l e s ! ” ) ;
3 minVoxelEdgeLength = 5 ;
4
5 // ======== MAIN =============
6 // I t e r a t i n g through a l l d i s t i n c t gray v a l u e s
7 maxGrayVal = MaxGrayValue ( ) ;
8 p a r t i c l e I D = 1 ;
9

10 for ( grayVal = 1 ; grayVal < maxGrayVal ; grayVal++) {
11 run ( ” Dupl icate . . . ” , ” d u p l i c a t e ” ) ;
12 rename ( p a r t i c l e I D ) ;
13 E x t r a c t P a r t i c l e ( outputFolder , pa r t i c l e ID , grayVal ) ;
14 p a r t i c l e I D++;
15 }
16
17 // ====== max gray v a l ======
18 func t i on MaxGrayValue ( ) {
19 mgv = 1 ;
20
21 for ( i =1; i<=n S l i c e s ; i++) {
22 s e t S l i c e ( i ) ;
23 ge tRawSta t i s t i c s ( count , mean , min , max , std ) ;
24 i f (max > mgv) {
25 mgv = max ;
26 }
27 }
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28 p r i n t ( ”Max gray value : ” + d2s (mgv , 0 ) ) ;
29 return (mgv) ;
30 }
31
32 // ======= EXTRACT ===========
33 // E x t r a c t i n g each s i n g l e p a r t i c l e from the segmented image s t a c k .
34 // Here , each p a r t i c l e i s determined by a d i s t i n c t gray v a l u e .
35 // The method i t e r a t e s through a l l t h e s e gray va lues , i g n o r i n g no i se
36 // & edge−touch ing p a r t i c l e s g i v i n g a l l p a r t i c l e s in the volume .
37 func t i on E x t r a c t P a r t i c l e ( path , pa r t i c l e ID , grayVal ) {
38
39 // Set a c t u a l gray v a l u e to c r e a t e b inary image only c o n t a i n i n g

s i n g l e p a r t i c l e .
40 setAutoThreshold ( ” Defau l t dark stack ” ) ;
41 setThresho ld ( grayVal , grayVal ) ;
42 run ( ”Convert to Mask” , ”method=Defau l t background=Dark black ” ) ;
43
44 // Contro l i f volume con ta i ns p a r t i c l e v o x e l s & i s NOT touch ing i t s

edges .
45 i f ( isEmpty ( ) == 1 | | isTouchingEdge ( ) == 1) {
46 //do noth ing
47 }
48 else {
49 // Cropping the f u l l volume to the p a r t i c l e volume
50 run ( ”Auto Crop 3D” ) ;
51 rename ( ”Cropped” ) ;
52
53 // I f p a r t i c l e s are too sma l l compared to the voxe l−r e s o l u t i o n

−−> exc luded
54 getDimensions ( width , height , channels , s l i c e s , frames ) ;
55 i f ( he ight > minVoxelEdgeLength && width > minVoxelEdgeLength &&

s l i c e s > minVoxelEdgeLength ) {
56 run ( ”3D OC Options ” ,
57 ”volume ” +
58 ” s u r f a c e ” +
59 ” n b o f o b j . v o x e l s ” +
60 ” n b o f s u r f . v o x e l s ” +
61 ” m e a n d i s t a n c e t o s u r f a c e ” +
62 ” s t d d e v d i s t a n c e t o s u r f a c e ” +
63 ” m e d i a n d i s t a n c e t o s u r f a c e ” +
64 ” c e n t r e o f m a s s ” +
65 ” bounding box ” +
66 ” d o t s s i z e=5 f o n t s i z e =10

s t o r e r e s u l t s w i t h i n a t a b l e n a m e d a f t e r t h e i m a g e (
mac ro f r i end ly ) r e d i r e c t t o=none” ) ;

67 run ( ”3D Objects Counter” , ” th r e sho ld=1 s l i c e =10 min.=10 max
.=80000000000 s t a t i s t i c s ” ) ;

68
69 // Rename t a b l e to g e t ac ces s to the ImageJ b u i l t−in f u n c t i o n s
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70 IJ . renameResults ( ” S t a t i s t i c s f o r Cropped” , ” Resu l t s ” ) ;
71 nRows = nResults ;
72
73 // In case o f a f a i l u r e ( r e s u l t s not c o n t a i n i n g any number )
74 i f (nRows == 0) {
75 selectWindow ( ”Cropped” ) ;
76 run ( ”VTK Writer . . . ” , ” save =[” + outputFolder + ” F a i l u r e ” +

p a r t i c l e I D + ” . vtk ] ” ) ;
77 }
78 else {
79 saveAs ( ” Resu l t s ” , outputFolder + p a r t i c l e I D + ” . t sv ” ) ;
80 selectWindow ( ”Cropped” ) ;
81 run ( ”VTK Writer . . . ” , ” save =[” + outputFolder + p a r t i c l e I D +

” . vtk ] ” ) ;
82 }
83 c l o s e ( ” Resu l t s ” ) ;
84 }
85 c l o s e ( ”Cropped” ) ;
86 }
87 selectWindow ( p a r t i c l e I D ) ;
88 c l o s e ( ) ;
89 }
90
91 // ===== CHECK ( empty ) ===========
92 // Contro l i f the t h r e s h o l d i n g g i v e s a b i n a r i z e d r e s u l t wi th NO

p a r t i c l e v o x e l s ( whi te )
93 func t i on isEmpty ( ) {
94 getDimensions ( width , height , channels , s l i c e s , frames ) ;
95 a l l V o x e l s P e r S l i c e = he ight ∗ width ;
96
97 for ( s l i c e =1; s l i c e<=n S l i c e s ; s l i c e ++) {
98 s e t S l i c e ( s l i c e ) ;
99 ge tRawSta t i s t i c s (n , mean , min , max , std , h i s t ) ;

100 numBlackVoxels = h i s t [ 0 ] ;
101
102 i f ( numBlackVoxels < a l l V o x e l s P e r S l i c e ) {
103 return ( fa l se ) ;
104 break ;
105 }
106 }
107 return ( true ) ;
108 }
109
110 // ===== CHECK ( on edge ) ===========
111 // Checking i f the p a r t i c l e i s touch ing top OR bottom o f the sample

volume
112 func t i on isTouchingEdge ( ) {
113 getDimensions ( width , height , channels , s l i c e s , frames ) ;
114 a l l V o x e l s P e r S l i c e = he ight ∗ width ;
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115
116 // Going to s l i c e 1 ( top ) , check how many whi te p i x e l s in image (

p a r t i c l e phase )
117 s e t S l i c e (1 ) ;
118 ge tRawSta t i s t i c s (n , mean , min , max , std , h i s t ) ;
119 numBlackVoxelsSl ice1 = h i s t [ 0 ] ;
120
121 // . . . same on the l a s t s l i c e ( bottom )
122 s e t S l i c e ( n S l i c e s ) ;
123 ge tRawSta t i s t i c s (n , mean , min , max , std , h i s t ) ;
124 numBlackVoxelsSliceMax = h i s t [ 0 ] ;
125
126 // Check i f the p a r t i c l e i s touch ing top OR bottom
127 i f ( numBlackVoxelsSl ice1 < a l l V o x e l s P e r S l i c e | |

numBlackVoxelsSliceMax < a l l V o x e l s P e r S l i c e ) {
128 return ( true ) ;
129 break ;
130 }
131 return ( fa l se ) ;
132 }

Appendix E: Acquisition parameters for tomographic scan
of filter structure

Table S2: Measurement parameters for three scanned filter cake structures built from
the large-sized particle sample. Note that the uneven number of digits of
the fields of view are due to an artifact minimizing tomographic measurement
mode (Dynamic Ringe Removal, DRR).

Sample 1 Sample 2 Sample 3

field of view (FOV) in pixel 998 × 1001 987 × 1009 990 × 1005
sample size (cylindric, width × height) in mm 5 × 14.0 5 × 12.5 5 × 13.0
source filter (ZEISS standard) LE 4 LE 4 LE 4
acceleration voltage/power in kV/W 50 / 4 50 / 4 50 / 4
optical magnification 4× 4× 4×
pixel size in µm 3.90 3.99 4.01
exposure time 4 s 4 s 4 s
number of projections (angular range) 2001 (360°) 2001 (360°) 2001 (360°)
camera binning 2 2 2
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Appendix F: Raw data of laser diffraction measurement
and class based pore size distribution
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Figure S10: Particle size distribution (left) and corresponding pore size distribution
(rigth) to all three particle systems small, medium, and large. Note the
fluctuating density distribution to the left side due to class based determi-
nation by laser diffraction measurement. For better comparison, the raw
data of the pore size distribution is binned within the same classes.
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10 Appendix

10.1 Application Example 1: Fracture Analysis

Forsberg and Siviour[177] perform a strain analysis of a cylindrical bed of sugar under com-
pressive load to determine a full 3D! (3D!) displacement field. To correlate the same regions of
the tomography scans, before and after load, the naturally occurring tin phase (approx. 15 %
volume fraction) was used as high X–ray attenuating tracer. In contrast to this, Bay et al.[163]
use structural sample features, in this case bone structures. Garcia et al.[42] quantify the amount
of preferential grain boundary fracture compared to random fracture for different breakage
conditions using XRM. Here, natural copper ore particles where used other than Xu et al.[178],
who used down–cutted cubes from the same material to have a defined state for compression
load tests.

Daly et al.[179] investigate the ductile fracture in a sample of pressure vessel steel over
multiple scales with a combination of nano- and micro–CT supported by plasma focused ion
beam (PFIB) to assist the calibration for ductile fracture models. Differences in X–ray attenuation
can also arise within a nearly homogeneous matrix like cast alumina if there are inclusions
above the size of three voxels. In case of fractures, the fracture surface on both opposite parts
must also be at least three voxels apart, in most cases introduced by plastic deformation after
the induced stress. As part of the Collaborative Research Center (CRC) 920 alumina casting
samples where machined to radial symmetric samples for tensile testing (see Fig. 10.1-a). The
objective is to expose the tensile sample to an oscillating alternating stress under tensile load,
called ultra sonic fatigue test (USFT), until a crack develops.

The difficulty is to stop the USFT before the crack macroscopically ruptures the sample. The
crack is in the process of spreading. Since the workpiece is ductile, the crack surfaces no longer
close completely when the load is removed and, in the best case, the resulting distance is suffi-
cient to make a crack surface visible via an XRM measurement. Scanning the sample before USFT
delivers the initial state. Scanning after each USFT cycle shows when a crack appears. If a crack
is visible, it can be correlated to the initial volume (b). The results were recently published by
Wagner et al.[6].

Note that the same measurement parameters are mandatory and that the best possible align-
ment of the sample, e.g., by appropriate marking on the sample holder, greatly facilitates the cor-
relation of the volumes. The same applies to comparative 2D measurements, e.g. cross–sectional
images. If the preparative work is very precise during the measurement, the measurement re-
sults can be used to determine the position of potential cutting planes very precisely and thus
avoid time–consuming multiple cuts and grindings.
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Figure 10.1: Application of XRM for fracture analysis of cast alumina sample before and after USFT (a), giving an
extracted fractured surface in 3D! and in the corresponding top and side view (b).

10.2 Application Example 2: 3D Contact Angle Measurement

The contact angle between two phases is essential to describe interaction forces and develop
reliable models, e.g., for the above mentioned metal melt filtration within the CRC 920. Normally,
the surface is ideally smooth for such measurements. In most cases, however, real surfaces cause
effects that significantly influence the contact area, in 3D the contact line. Surface unevenness,
for example, leads to pinning effects that distort the contact areas and thus change the contact
angle. Since these changes can be pronounced differently at certain points, it is essential to
know the spatial contact angle distribution and not to limit to 2D projections, as is the case with
conventional measurements.

In this particular case, with reference to the material system of the application from the
CRC 920, a metal melt was chosen that can be examined at room temperature, in this case
mercury. The substrate consists of aluminium oxide particles, which on the one hand represent
the filter material and on the other hand serve as correlation markers. Figure 10.2 illustrates
details of the measurement setup developed by my colleague Lisa Ditscherlein. (a) shows the
sample mounting on top of a stainless steal pin that serves as a carrier for the particles, which
were fixed with a two-component epoxy resin. After fixation, the particles were pressed tightly
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with a cover glass to prevent the particles from slipping afterwards. The droplet was placed
with a syringe on top of the surface.

b

d e

f g

 g

ca c

Figure 10.2: 3D contact angle measurement with a mercury droplet positioned a substrate made of alumina oxide
with the mounted sample (a), the droplet on the surface (b), mercury residuals after removing the droplet
(c), overlaying low-(grey) and high-resolution scans (green and red) from the side, same from the top (e),
determined contact angles aligned on the contact line at the contact points (f) with the corresponding
magnification (g).

If one considers the size of the droplet (approx. 300 µm), it becomes clear how difficult the cor-
rect positioning is. Surprisingly, the position of the droplet was very stable on the surface—the
positions before and after repositioning were exactly the same. (b) shows the mercury droplet
on top of the surface, (c) mercury residuals after removing the droplet from the surface, (d) over-
laying of three different scans from the side, (1) low-resolution scan of the substrate without
the droplet (gray), (2) high-resolution scan of a reduced area (green) and (3) the corresponding
high-resolution scan of the droplet (red). Note that due to the extremely different X–ray attenua-
tion coefficients of the substrate and the droplet, scans had to be performed at different energies.
A low energy one for the substrate that delivers enough low energy photons to provide enough
material contrast and a high energy one that manages to penetrate the extremely highly absorb-
ing mercury droplet and allow reasonably practical scan times. This is sometimes called a dual
energy approach. (e) is showing the corresponding top view. (f) and the referring magnification
(g) shows the angles at the contact lines represented by vectors, all determined by self-written
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algorithms by my colleague Erik Löwer.
Note, that the removing of the droplet was necessary to get two different measurement sit-

uations. One giving a situation with maximum contrast for low X–ray attenuating substrate
details (low–energy scan) and one with maximum energy, where contrast within the mercury
phase “doesn’t matter”, but to realize a reasonable scanning time. Mercury in this case was a
border scenario that maximises the dynamic range of the system.

10.3 Influence of the Source Filter

The source filter has no influence on the grey value histogram, see Fig. 10.3-a, but on detector
counts, see Fig. 10.3-b.
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Figure 10.3: Source filter (a) showing no influence on the grey value, but (b) on the photon intensity.

Note that all referring projection images were captured with a constant exposure time of 1 s.
High energy 6 (HE6), see Tab. 10.1 in Appendix 4.4.2, refers to the highest possible standard
filter, which explains the extremely sharp drop in the photon intensity.

10.4 Influence of the X–rays on the Sample

Fig. 10.4 shows that the epoxy resin matrix used for particle embedding is clearly recognizable
by its clear transparency. After the measurement, a significant colour change to light yellow is
observed. This effect was also recognized by Parlanti et al. [98].

a b

X-ray exposure

Figure 10.4: Colour change of epoxy resin matrix (a) after X–ray exposure (b) from clear transparent to light yellow –
example is taken from single particle measurement. Note that (a) and (b) are different samples.
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A dependency of the strength of the colouring on exposure time, energy, power and sample
volume was not evaluated, since no effects on the particle system were observed. Qualitatively,
however, differences were visible.

10.5 Appropriate Filter Settings

Tab. 10.1 shows the appropriate source filters for BH reduction. Note that the distinction is made
between two different acceleration voltages and objectives.

Table 10.1: Selection of the appropriate source filter according to measured transmission for low (80 keV) and high
(140 keV) energy measuring range depending on selected optical magnification. Info extracted and rear-
ranged from the Zeiss Xradia manual [180]

Transmission Source Filter
LE - low energy

HE - high–energy
at 80 keV at 140 keV

0.4x/4x 20x/40x 0.4x/4x 20x/40x
>0.74 >0.63

→80 keV

no filter (air)
0.74 - 0.58 0.63 - 0.44 LE1
0.58 - 0.46 0.44 - 0.34 LE2
0.46 - 0.36 0.34 - 0.28 LE3
0.36 - 0.28 0.28 - 0.21 LE4
0.28 - 0.20 0.21 - 0.14 LE5
0.20 - 0.12 0.14 - 0.12 LE6

→140 keV

0.32 - 0.20 0.30 - 0.18 HE1
0.20 - 0.12 0.18 - 0.08 HE2
0.12 - 0.08 0.08 - 0.06 HE3
0.08 - 0.05 0.06 - 0.04 HE4
0.05 - 0.03 0.04 - 0.03 HE5

<0.03 <0.03 HE6

10.6 Log File Parser

Fig. 10.5 gives one simple example of a semi–automated log file analysis that was realized
as part of this thesis. Fig. 10.5-a shows a log file, a timestamped line together with a string
concerning general information, warnings, and errors. Fig. 10.5-b shows a screenshot of the
graphical user interface. The parser searches for such patterns defined by the user and extracts
the related string. Now all unique strings are grouped and sorted in descending order to create
a pareto–like diagram that shows the most common warnings and errors Fig. 10.5-c.
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Error getting number of GPUs [init] GPU adapter number is out of range. 33 Maximum is at the edge in computing shift in finding center shift. 27

Initialization of reconstructor failed.  Please make sure the USB license key for "CB" is plugged in and try to restart this program.33 Job Queue load error, file: C:\ProgramData\Carl Zeiss X-ray Microscopy\RSP\CurrentQueue\CurrentQueue.json does not exist12

User aborted without retry. Reconstructor cannot continue, possibly because GPU memory is taken by other programs.33 Reconstruction job failed 9

Reconstruction job failed 33 No valid shift scores in computing shift in finding center shift. 6

Unable to open X-File: C in XrmBasicImageProcessing::ReadDistortionCorrectionArrayFromFiles()15 Error getting number of GPUs [init] GPU adapter number is out of range. 6

Job Queue load error, file: C:\ProgramData\Carl Zeiss X-ray Microscopy\RSP\CurrentQueue\CurrentQueue.json does not exist12 Initialization of reconstructor failed.  Please make sure the USB license key for "CB" is plugged in and try to restart this program.6

Centering failed in XrmDageSource::ColdCathodeAndCentering(). 9 User aborted without retry. Reconstructor cannot continue, possibly because GPU memory is taken by other programs.6

XrmDageMK3SourceLUT::GetCreated => LUT map was empty. 3 X-ray warmup script failed to load. Contact ZEISS support. 6

Recon Global min should be less than the global max in XrmRecipePoint::SetGlobalMin()!3 Unable to open X-File: C in XrmBasicImageProcessing::ReadDistortionCorrectionArrayFromFiles()6

Aging failed to load warm up script. MK3Warming.ini file is missing or corrupted.3

X-Ray Source Aging failed to complete. Retry number 1 3

Aug 20 Sep 20

a

b

c

Figure 10.5: Self–coded log file parsing program. (a) shows the inital state: log files sorted by timestamp in a text file.
(b) shows the graphical user interface of the parsing program and (c) a possible analysis comparing two
months according to the most frequent cases of errors.

The following C# code–snippet is implemented in Visual Studio Express within the .NET
framework.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.IO;
using System.Text.RegularExpressions;

namespace XRadiaLogFileParser
{
public partial class Form1 : Form
{
string folderPath = String.Empty;
string searchPattern = String.Empty;
long totalLines = 0;
DateTime startTime;
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DateTime finishTime;
TimeSpan totalTime = TimeSpan.Zero;

Dictionary<string, int> dic = new Dictionary<string, int>();
string monthGroup;

public Form1()
{
InitializeComponent();
textBox1.Clear();

}

private void button1_Click(object sender, EventArgs e)
{
startTime = DateTime.Now;

string searchPattern = textBox2.Text;
string filePath = String.Empty;
int counter = 0;

if (folderPath != String.Empty)
{
if (searchPattern != String.Empty)
{
//for each file
DirectoryInfo ParentDirectory = new DirectoryInfo(folderPath);
int fileCount = ParentDirectory.GetFiles("*.log").Length;
progressBar2.Maximum = fileCount;
progressBar2.Value = 0;

foreach (FileInfo f in ParentDirectory.GetFiles("*.log"))
{
filePath = folderPath + "\\" + f.Name;
ParseFile(filePath, searchPattern);

counter++;
progressBar2.PerformStep();
toolStripStatusLabel1.Text = "File: " + counter.ToString() + " of " +

fileCount.ToString();
statusStrip1.Refresh();

}

//calculate additional statistics
if (cbCalculateStatistics.Checked)
{
CalculateStatistics();

}

//calculate and display duration
finishTime = DateTime.Now;
totalTime = finishTime - startTime;
toolStripStatusLabel3.Text = "Total Time: " + totalTime.ToString(@"mm\:ss")

+ " min";
statusStrip1.Refresh();
}
else
{
MessageBox.Show("Please enter Search Pattern!");

}
}
else
{
MessageBox.Show("Please select Folder with LogFiles!");

}
}
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private void button2_Click(object sender, EventArgs e)
{
//initialize
progressBar1.Value = 0;
progressBar2.Value = 0;
textBox1.Clear();
textBox2.Clear();
lblDone.Visible = false;

folderBrowserDialog1.ShowDialog();
folderPath = folderBrowserDialog1.SelectedPath.ToString();
label5.Text = folderPath;

}

/// <summary>
/// parse the present file in the selected folder
/// </summary>
/// <param name="filePath"></param>
/// <param name="searchPattern"></param>
private void ParseFile(string filePath, string searchPattern)
{
StreamReader file = new StreamReader(filePath);
string line = String.Empty;
string lineNew = String.Empty;

int lineCount = File.ReadAllLines(filePath).Length;
progressBar1.Maximum = lineCount;
progressBar1.Value = 0;

int counter = 0;

//look for all lines in the file that contains the search pattern
while ((line = file.ReadLine()) != null)
{
if (line.Contains(searchPattern))
{
lineNew = SplitAndRearrangeLine(line);

//..append them to the textBox
textBox1.AppendText(lineNew + "\r\n");

}
progressBar1.PerformStep();

counter++;
}
file.Close();
totalLines = totalLines + counter;
toolStripStatusLabel2.Text = "Total Lines: " + totalLines.ToString();

}

/// <summary>
/// timestamp is bad formatted --> splitting + rearranging
/// </summary>
/// <param name="stringToSplit"></param>
/// <returns></returns>
private string SplitAndRearrangeLine(string stringToSplit)
{
string s = stringToSplit;

string day, month, year, hour, minute, second;
string description;
string lineNew;
day = s.Substring(4, 2);
month = s.Substring(1, 2);
year = s.Substring(7, 4);
hour = s.Substring(12, 2);
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minute = s.Substring(15, 2);
second = s.Substring(18, 2);

description = s.Substring(30, s.Length - 30);
//delete leading space
description = description.Trim();
lineNew = String.Format("{0}.{1}.{2} {3}:{4}:{5};{2}_{1}#{6}", day

, month
, year
, hour
, minute
, second
, description);

return lineNew;
}

/// <summary>
/// calculate the statistics - how many occurences per alert
/// </summary>
private void CalculateStatistics()
{
//split multiline textbox into separate lines
string[] lines = Regex.Split(textBox1.Text, "\r\n");

//extract alert text without timestamp
string lineAlert = String.Empty;

foreach (var line in lines)
{
if (line != String.Empty)
{
//JOIN monthGroup (for statistics) to lineAlert
lineAlert = line.Substring(20, line.Length - 20);

//if the alert string is not in the dictionary
if (!dic.ContainsKey(lineAlert))
{
//add key-value pair to dictionary
dic.Add(lineAlert, 1);

}
else
{
//increment value by 1
dic[lineAlert]++;

}
}

}
}

/// <summary>
/// writing search result to txt-file
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button3_Click(object sender, EventArgs e)
{
try
{
if (textBox1.Text != String.Empty)
{
File.WriteAllText(folderPath + "\\PatternMatchResult.txt", textBox1.Text);
File.WriteAllLines(folderPath + "\\PatternMatchResult_statistics.txt",
dic.OrderByDescending(x => x.Value).Select(x => x.Key + ";" +

x.Value).ToArray());
lblDone.Visible = true;
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}
else
{
MessageBox.Show("No search result to save!");

}
}
catch (Exception)
{
MessageBox.Show("Failure while saving! " + e.ToString());
throw;

}
}

}
}



“Children bring chaos and clutter and an infinite potential for the future”
— Dan Simmons, The Rise of Endymion —

“Particles as well.”
— The author , —
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