3,091 research outputs found
Outdoor PV Degradation Comparison
As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions
Lesson Plans for Teaching Economics with The Big Bang Theory
Using examples in the classroom from current and past television shows and movies is becoming increasingly common. Being able to relate ideas back to a popular clip or episode allows the instructor to reach students in ways the traditional lecture cannot. Building on the work of Tierney, Mateer, Smith, Wooten, and Geerling (2016), this paper introduces five lesson plans tied to clips from The Big Bang Theory that can be used in high school (9-12) economics courses
Multiwavelength Variations of 3C 454.3 during the November 2010 to January 2011 Outburst
We present multiwavelength data of the blazar 3C 454.3 obtained during an
extremely bright outburst from November 2010 through January 2011. These
include flux density measurements with the Herschel Space Observatory at five
submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at
gamma-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies,
and the Submillimeter Array at 1.3 mm. From this dataset, we form a series of
52 spectral energy distributions (SEDs) spanning nearly two months that are
unprecedented in time coverage and breadth of frequency. Discrete correlation
anlaysis of the millimeter, far-infrared, and gamma-ray light curves show that
the variations were essentially simultaneous, indicative of co-spatiality of
the emission, at these wavebands. In contrast, differences in short-term
fluctuations at various wavelengths imply the presence of inhomegeneities in
physical conditions across the source. We locate the site of the outburst in
the parsec-scale core, whose flux density as measured on 7 mm Very Long
Baseline Array images increased by 70 percent during the first five weeks of
the outburst. Based on these considerations and guided by the SEDs, we propose
a model in which turbulent plasma crosses a conical standing shock in the
parsec-scale region of the jet. Here, the high-energy emission in the model is
produced by inverse Compton scattering of seed photons supplied by either
nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for
X-rays) synchrotron radiation from plasma that crosses the standing shock. For
the two dates on which we fitted the model SED to the data, the model
corresponds very well to the observations at all bands except at X-ray
energies, where the spectrum is flatter than observed.Comment: Accepted for publication in Astrophysical Journal. 82 pages, 13
figure
Simulating Dynamical Features of Escape Panic
One of the most disastrous forms of collective human behaviour is the kind of
crowd stampede induced by panic, often leading to fatalities as people are
crushed or trampled. Sometimes this behaviour is triggered in life-threatening
situations such as fires in crowded buildings; at other times, stampedes can
arise from the rush for seats or seemingly without causes. Tragic examples
within recent months include the panics in Harare, Zimbabwe, and at the
Roskilde rock concert in Denmark. Although engineers are finding ways to
alleviate the scale of such disasters, their frequency seems to be increasing
with the number and size of mass events. Yet, systematic studies of panic
behaviour, and quantitative theories capable of predicting such crowd dynamics,
are rare. Here we show that simulations based on a model of pedestrian
behaviour can provide valuable insights into the mechanisms of and
preconditions for panic and jamming by incoordination. Our results suggest
practical ways of minimising the harmful consequences of such events and the
existence of an optimal escape strategy, corresponding to a suitable mixture of
individualistic and collective behaviour.Comment: For related information see http://angel.elte.hu/~panic,
http://www.helbing.org, http://angel.elte.hu/~fij, and
http://angel.elte.hu/~vicse
Multi-wavelength spectroscopy of the bipolar outflow from Cepheus E
Cepheus E is the site of an exceptional example of a protostellar outflow
with a very young dynamical age and extremely high near infrared luminosity. We
combine molecular spectroscopic data from the submillimeter to the near
infrared in order to interpret the rotational excitation of CO and the
ro-vibrational excitation of H2. We conclude that C-type shocks with a
paraboloidal bow shock geometry can simultaneously explain all the molecular
excitations. Extinction accounts for the deviation of the column densities from
local thermodynamic equilibrium. A difference in the extinction between the red
and blue-shifted outflow lobes may account for the measured flux difference.
The outflow is deeply embedded in a clump of density 10^5cm^-3, yet a good
fraction of atomic hydrogen, about 40%, is required to explain the excitation
and statistical equilibrium. We propose that this atomic component arises,
self-consistently, from the dissociated gas at the apex of the leading bow
shocks and the relatively long molecule reformation time. At least 20 bow
shocks are required in each lobe, although these may be sub-divided into
smaller bows and turbulent shocked regions. The total outflow mechanical power
and cooling amounts to over 30L_\odot, almost half the source's bolometric
luminosity. Nevertheless, only about 6% of the clump mass has been set in
outward motion by the outflow, allowing a collapse to continue.Comment: 14 pages, 8 figures, accepted for publication in Ap
Mechanical Properties of Bamboo Through Measurement of Culm Physical Properties for Composite Fabrication of Structural Concrete Reinforcement
Bamboo fibers with high mechanical properties can be a sustainable alternative to synthetic fibers for application in fiber reinforced polymer composites. The first aim of this study is to evaluate the dependence of mechanical properties of Dendrocalamus asper, known as bamboo Petung from Indonesia, on physical properties of the culm, including culm diameter, wall thickness, height, moisture content and specific density. Correlations between mechanical properties including tensile strength, modulus of rupture and modulus of elasticity in flexure and tension and culm physical properties have been studied. The results demonstrate that specific density is directly correlated with all these mechanical properties of bamboo while the moisture content values are correlated only with value of modules of rupture. Although wall thicknesses value of the culm are correlated with all of the mechanical properties studied, the culm diameter was only correlated with modulus of rupture and modulus of elasticity in flexure. Therefore, measurements of the culm geometry and specific density of raw bamboo have the potential for rapid, non-destructive evaluations of the quality of the bamboo, particularly in nurseries and forests where there is limited access to testing facilities. The second aim of this study is to evaluate whether such tests allow for an evaluation of the mechanical potential of the bamboo for production of high performance bamboo fiber reinforced polymer composites. Use of these formulas is illustrated through a case study of bamboo composite reinforcement for structural concrete. Pull-out tests and beam testing using this composite successfully validate the usefulness of this strategy for sustainable construction
Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression
BACKGROUND: Deep sequencing of transposon mutant libraries (or TnSeq) is a powerful method for probing essentiality of genomic loci under different environmental conditions. Various analytical methods have been described for identifying conditionally essential genes whose tolerance for insertions varies between two conditions. However, for large-scale experiments involving many conditions, a method is needed for identifying genes that exhibit significant variability in insertions across multiple conditions.
RESULTS: In this paper, we introduce a novel statistical method for identifying genes with significant variability of insertion counts across multiple conditions based on Zero-Inflated Negative Binomial (ZINB) regression. Using likelihood ratio tests, we show that the ZINB distribution fits TnSeq data better than either ANOVA or a Negative Binomial (in a generalized linear model). We use ZINB regression to identify genes required for infection of M. tuberculosis H37Rv in C57BL/6 mice. We also use ZINB to perform a analysis of genes conditionally essential in H37Rv cultures exposed to multiple antibiotics.
CONCLUSIONS: Our results show that, not only does ZINB generally identify most of the genes found by pairwise resampling (and vastly out-performs ANOVA), but it also identifies additional genes where variability is detectable only when the magnitudes of insertion counts are treated separately from local differences in saturation, as in the ZINB model
Promoting Philanthropy: Global Challenges and Approaches
Philanthropy promotion has become a subject of increasing interest within civil society over the last two decades. This paper tackles questions concerning the emergence of a more effective strategic philanthropy, identifying challenges to better philanthropy and possible strategies to address them, ongoing approaches and innovative models. It focuses on adapting philanthropy strategies to various countries, cultures, and contexts
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
- …