16 research outputs found

    Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity

    Get PDF
    The sustainable use of soils requires the protection of soil biodiversity because of its importance in the delivery of ecosystems services. However, no effective indicator exists which would allow assessment of the current state of biodiversity and is sensitive to change. This study, which is a component of the EcoFINDERS project, examines the use of mites (Acari) as a possible biological indicator of soil community composition. Thirty-six sites were sampled across 10 European countries spanning four bio-climatic zones (Alpine, Atlantic, Continental and Mediterranean) and 3 land uses (arable, grassland and forestry) for both biotic and abiotic variables. Results show a significant effect of bio-climatic zone on mite communities; in particular, the Mediterranean region had a rather distinct composition. Land use type significantly affected mite community composition and there was a distinct association with forestry. Cross-taxon congruence among soil taxa was variable and generally weak. Procrustes analysis showed that there was little similarity between the patterns of variation in mite community composition and those of other taxonomic groups (Collembola, Enchytraeidae, Nematoda and microbes). Mite and Collembola communities had the strongest correlation ( r= 0.4316, p</p

    Moving past neonicotinoids and honeybees : A systematic review of existing research on other insecticides and bees

    No full text
    Synthetic pesticides (e.g. herbicides, fungicides and insecticides) are used widely in agriculture to protect crops from pests, weeds and disease. However, their use also comes with a range of environmental concerns. One key concern is the effect of insecticides on non-target organisms such as bees, who provide pollination services for crops and wild plants. This systematic literature review quantifies the existing research on bees and insecticides broadly, and then focuses more specifically on non-neonicotinoid insecticides and non-honeybees. We find that articles on honeybees (Apis sp.) and insecticides account for 80% of all research, with all other bees combined making up 20%. Neonicotinoids were studied in 34% of articles across all bees and were the most widely studied insecticide class for non-honeybees overall, with almost three times as many studies than the second most studied class. Of non-neonicotinoid insecticide classes and non-honeybees, the most studied were pyrethroids and organophosphates followed by carbamates, and the most widely represented bee taxa were bumblebees (Bombus), followed by leaf-cutter bees (Megachile) and mason bees (Osmia). Research has taken place across several countries, with the highest numbers of articles from Brazil and the US, and with notable gaps from countries in Asia, Africa and Oceania. Mortality was the most studied effect type, while sub-lethal effects such as on behaviour were less studied. Few studies tested how the effect of insecticides were influenced by multiple pressures, such as climate change and co-occurring pesticides (cocktail effects). As anthropogenic pressures do not occur in isolation, we suggest that future research also addresses these knowledge gaps. Given the changing global patterns in insecticide use, and the increasing inclusion of both non-honeybees and sub-lethal effects in pesticide risk assessment, there is a need for expanding research beyond its current state to ensure a strong scientific evidence base for the development of risk assessment and associated policy

    Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe

    No full text
    Soil organisms are considered drivers of soil ecosystem services (primary productivity, nutrient cycling, carbon cycling, water regulation) associated with sustainable agricultural production. Soil biodiversity was highlighted in the soil thematic strategy as a key component of soil quality. The lack of quantitative standardised data at a large scale has resulted in poor understanding of how soil biodiversity could be incorporated into legislation for the protection of soil quality. In 2011, the EcoFINDERS (FP7) project sampled 76 sites across 11 European countries, covering five biogeographical zones (Alpine, Atlantic, Boreal, Continental and Mediterranean) and three land-uses (arable, grass, forestry). Samples collected from across these sites ranged in soil properties; soil organic carbon (SOC), pH and texture. To assess the range in biodiversity and ecosystem function across the sites, fourteen biological methods were applied as proxy indicators for these functions. These methods measured the following: microbial diversity: DNA yields (molecular biomass), archaea, bacteria, total fungi and arbuscular mycorrhizal fungi; micro fauna diversity: nematode trophic groups; meso fauna diversity: enchytraeids and Collembola species; microbial function: nitrification, extracellular enzymes, multiple substrate induced respiration, community level physiological profiling and ammonia oxidiser/nitrification functional genes. Network analysis was used to identify the key connections between organisms under the different land use scenarios. Highest network density was found in forest soils and lowest density occurred in arable soils. Key taxomonic units (TUs) were identified in each land-use type and in relation to SOC and pH categorisations. Top-connected taxonomic units (i.e. displaying the most co-occurrence to other TUs) were identified for each land use type. In arable sites this was dominated by bacteria and fungi, while in grassland sites bacteria and fungi were most connected. In forest soils archaeal, enchytraeid and fungal TUs displayed the largest number of neighbours, reflecting the greatest connectivity. Multiple regression models were applied to assess the potential contribution of soil organisms to carbon cycling and storage and nutrient cycling of specifically nitrogen and phosphorus. Key drivers of carbon cycling were microbial biomass, basal respiration and fungal richness; these three measures have often been associated with carbon cycling in soils. Regression models of nutrient cycling were dependent on the model applied, showing variation in biological indicators

    The Australian dream : visions and revisions of \u27new world\u27 futures

    Get PDF
    EA SPE BIOME CT3International audienceSoils provide many ecosystem services that are ultimately dependent on the local diversity and belowground abundance of organisms. Soil biodiversity is affected negatively by many threats and there is a perceived policy requirement for the effective biological monitoring of soils at the European level. The aim of this study was to evaluate and recommend policy relevant, cost-effective soil biological indicators for biodiversity and ecosystem function across Europe. A total of 18 potential indicators were selected using a logical-sieve based approach. This paper considers the use of indicators from the ‘top down’ (i.e. concerned with the process of indicator selection), rather than from the ‘bottom up’ detail of how individual indicators perform at specific sites and with specific treatments. The indicators assessed a range of microbial, faunal and functional attributes, newer nucleic acids based techniques, morphological approaches and process based measurements. They were tested at 6 European experimental sites already in operation and chosen according to land-use, climatic zone and differences in land management intensity. These were 4 arable sites, one each in Atlantic, Continental, Mediterranean and Pannonian climate zones, and 2 grassland sites, one each in Atlantic and Continental zones. At each site we sampled three replicated plots of contrasting management intensity and, while the treatments varied from site to site, their disturbance effects were quantified in terms of land use intensity. The field sampling and laboratory analysis were standardised through a combination of ISO protocols, or standard operating procedures if the former were not available. Sites were sampled twice, in autumn 2012 and spring or autumn 2013, with relative costs of the different indicators being determined each time. A breakdown of the cost effectiveness of the indicators showed the expected trade-off between effort required in the field and effort required in the laboratory. All the indicators were able to differentiate between the sites but, as no single indicator was sensitive to all the differences in land use intensity, we suggest that an indicator programme should be based upon a suite of different indicators. For monitoring under the European climatic zones and land uses of this study, indicators for ecosystem functions related to the services of water regulation, C-sequestration and nutrient provision would include a minimum suite of: earthworms; functional genes; and bait lamina. For effective monitoring of biodiversity all taxonomic groups would need to be addressed
    corecore