136 research outputs found

    Quantum Superposition Principle and Geometry

    Full text link
    If one takes seriously the postulate of quantum mechanics in which physical states are rays in the standard Hilbert space of the theory, one is naturally lead to a geometric formulation of the theory. Within this formulation of quantum mechanics, the resulting description is very elegant from the geometrical viewpoint, since it allows to cast the main postulates of the theory in terms of two geometric structures, namely a symplectic structure and a Riemannian metric. However, the usual superposition principle of quantum mechanics is not naturally incorporated, since the quantum state space is non-linear. In this note we offer some steps to incorporate the superposition principle within the geometric description. In this respect, we argue that it is necessary to make the distinction between a 'projective superposition principle' and a 'decomposition principle' that extend the standard superposition principle. We illustrate our proposal with two very well known examples, namely the spin 1/2 system and the two slit experiment, where the distinction is clear from the physical perspective. We show that the two principles have also a different mathematical origin within the geometrical formulation of the theory.Comment: 10 pages, no figures. References added. V3 discussion expanded and new results added, 14 pages. Dedicated to Michael P. Ryan on the occasion of his sixtieth bithda

    Transverse Invariant Higher Spin Fields

    Get PDF
    It is shown that a symmetric massless bosonic higher-spin field can be described by a traceless tensor field with reduced (transverse) gauge invariance. The Hamiltonian analysis of the transverse gauge invariant higher-spin models is used to control a number of degrees of freedom.Comment: 12 pages, no figures. The general proof and the example of a spin-3 adde

    A time-space varying speed of light and the Hubble Law in static Universe

    Get PDF
    We consider a hypothetical possibility of the variability of light velocity with time and position in space which is derived from two natural postulates. For the consistent consideration of such variability we generalize translational transformations of the Theory of Relativity. The formulae of transformations between two rest observers within one inertial system are obtained. It is shown that equality of velocities of two particles is as relative a statement as simultaneity of two events is. We obtain the expression for the redshift of radiation of a rest source which formally reproduces the Hubble Law. Possible experimental implications of the theory are discussed.Comment: 7 page

    Effective constraint potential in lattice Weinberg - Salam model

    Full text link
    We investigate lattice Weinberg - Salam model without fermions for the value of the Weinberg angle θW30o\theta_W \sim 30^o, and bare fine structure constant around α1/150\alpha \sim 1/150. We consider the value of the scalar self coupling corresponding to bare Higgs mass around 150 GeV. The effective constraint potential for the zero momentum scalar field is used in order to investigate phenomena existing in the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase of the lattice model. This is the region of the phase diagram, where the continuum physics is to be approached. We compare the above mentioned effective potential (calculated in selected gauges) with the effective potential for the value of the scalar field at a fixed space - time point. We also calculate the renormalized fine structure constant using the correlator of Polyakov lines and compare it with the one - loop perturbative estimate.Comment: LATE

    Planar Dirac Electron in Coulomb and Magnetic Fields

    Get PDF
    The Dirac equation for an electron in two spatial dimensions in the Coulomb and homogeneous magnetic fields is discussed. For weak magnetic fields, the approximate energy values are obtained by semiclassical method. In the case with strong magnetic fields, we present the exact recursion relations that determine the coefficients of the series expansion of wave functions, the possible energies and the magnetic fields. It is found that analytic solutions are possible for a denumerably infinite set of magnetic field strengths. This system thus furnishes an example of the so-called quasi-exactly solvable models. A distinctive feature in the Dirac case is that, depending on the strength of the Coulomb field, not all total angular momentum quantum number allow exact solutions with wavefunctions in reasonable polynomial forms. Solutions in the nonrelativistic limit with both attractive and repulsive Coulomb fields are briefly discussed by means of the method of factorization.Comment: 18 pages, RevTex, no figure

    Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method

    Full text link
    The Hamilton-Jacobi analysis is applied to the dynamics of the scalar fluctuations about the Friedmann-Robertson-Walker (FRW). The gauge conditions are found from the consistency conditions. The physical degrees of freedom of the model are obtain by symplectic projector method. The role of the linearly dependent Hamiltonians and the gauge variables in Hamilton-Jacobi formalism is discussed.Comment: 11 page

    Automatic regularization by quantization in reducible representations of CCR: Point-form quantum optics with classical sources

    Full text link
    Electromagnetic fields are quantized in manifestly covariant way by means of a class of reducible representations of CCR. Aa(x)A_a(x) transforms as a Hermitian four-vector field in Minkowski four-position space (no change of gauge), but in momentum space it splits into spin-1 massless photons (optics) and two massless scalars (similar to dark matter). Unitary dynamics is given by point-form interaction picture, with minimal-coupling Hamiltonian constructed from fields that are free on the null-cone boundary of the Milne universe. SL(2,C) transformations and dynamics are represented unitarily in positive-norm Hilbert space describing NN four-dimensional oscillators. Vacuum is a Bose-Einstein condensate of the NN-oscillator gas. Both the form of Aa(x)A_a(x) and its transformation properties are determined by an analogue of the twistor equation. The same equation guarantees that the subspace of vacuum states is, as a whole, Poincar\'e invariant. The formalism is tested on quantum fields produced by pointlike classical sources. Photon statistics is well defined even for pointlike charges, with UV/IR regularizations occurring automatically as a consequence of the formalism. The probabilities are not Poissonian but of a R\'enyi type with α=11/N\alpha=1-1/N. The average number of photons occurring in Bremsstrahlung splits into two parts: The one due to acceleration, and the one that remains nonzero even if motion is inertial. Classical Maxwell electrodynamics is reconstructed from coherent-state averaged solutions of Heisenberg equations. Static pointlike charges polarize vacuum and produce effective charge densities and fields whose form is sensitive to both the choice of representation of CCR and the corresponding vacuum state.Comment: 2 eps figures; in v2 notation in Eq. (39) and above Eq. (38) is correcte

    Eikonal Approximation to 5D Wave Equations as Geodesic Motion in a Curved 4D Spacetime

    Full text link
    We first derive the relation between the eikonal approximation to the Maxwell wave equations in an inhomogeneous anisotropic medium and geodesic motion in a three dimensional Riemannian manifold using a method which identifies the symplectic structure of the corresponding mechanics. We then apply an analogous method to the five dimensional generalization of Maxwell theory required by the gauge invariance of Stueckelberg's covariant classical and quantum dynamics to demonstrate, in the eikonal approximation, the existence of geodesic motion for the flow of mass in a four dimensional pseudo-Riemannian manifold. These results provide a foundation for the geometrical optics of the five dimensional radiation theory and establish a model in which there is mass flow along geodesics. Finally we discuss the case of relativistic quantum theory in an anisotropic medium as well. In this case the eikonal approximation to the relativistic quantum mechanical current coincides with the geodesic flow governed by the pseudo-Riemannian metric obtained from the eikonal approximation to solutions of the Stueckelberg-Schr\"odinger equation. This construction provides a model for an underlying quantum mechanical structure for classical dynamical motion along geodesics on a pseudo-Riemannian manifold. The locally symplectic structure which emerges is that of Stueckelberg's covariant mechanics on this manifold.Comment: TeX file. 17 pages. Rewritten for clarit

    Quantization on a 2-dimensional phase space with a constant curvature tensor

    Full text link
    Some properties of the star product of the Weyl type (i.e. associated with the Weyl ordering) are proved. Fedosov construction of the *-product on a 2-dimensional phase spacewith a constant curvature tensor is presented. Eigenvalue equations for momentum p and position q on a 2-dimensional phase space with constant curvature tensors are solved.Comment: 33 pages, LaTeX, Annals of Physics (2003
    corecore