954 research outputs found

    Satellite-to-satellite attitude control of a long-distance spacecraft formation for the Next Generation Gravity Mission

    Get PDF
    The paperpresentsthedesignandsomesimulatedresultsoftheattitudecontrolofasatelliteformation under studybytheEuropeanSpaceAgencyfortheNextGenerationGravityMission.Theformation consists oftwospacecraftswhich fly morethan200kmapartatanaltitudefromtheEarth'sgroundof between 300and400km.Theattitudecontrolmustkeeptheopticalaxesofthetwospacecraftaligned with amicroradianaccuracy(pointingcontrol).Thisismadepossiblebyspecific opticalsensors accompanyingtheinter-satellitelaserinterferometer,whichisthemainpayloadofthemission.These sensors alloweachspacecrafttoactuateautonomousalignmentafterasuitableacquisitionprocedure. Pointing controlisconstrainedbytheangulardrag-freecontrol,whichisimposedbymissionscience (Earth gravimetryatalowEarthorbit),andmustzerotheangularaccelerationvectorbelow0.01 μrad/s2 in thesciencefrequencyband.Thisismadepossiblebyultrafine accelerometersfromtheGOCE-class, whose measurementsmustbecoordinatedwithattitudesensorstoachievedrag-freeandpointing requirements.EmbeddedModelControlshowshowcoordinationcanbeimplementedaroundthe embedded modelsofthespacecraftattitudeandoftheformationframequaternion.Evidenceand discussion aboutsomecriticalrequirementsarealsoincludedtogetherwithextensivesimulatedresults of twodifferentformationtypes

    Plasmids Increase the Competitive Ability of Plasmid-Bearing Cells Even When Transconjugants Are Poor Donors, as Shown by Computer Simulations

    Get PDF
    Bacterial cells often suffer a fitness cost after conjugative plasmids’ entry because these cells replicate slower than plasmid-free cells. Compensatory mutations may appear after tens of or a few hundred generations, reducing or eliminating this cost. A previous work based on a mathematical model and computer simulations has shown that plasmid-bearing cells already adapted to the plasmid may gain a fitness advantage when plasmids transfer into neighboring plasmid-free cells because these cells are still unadapted to the plasmid. These slow-growing transconjugants use fewer resources, which can benefit donor cells. However, opportunities for compensatory mutations in transconjugants increase if these cells become numerous (through replication or conjugation). Moreover, transconjugants also gain an advantage when transferring the plasmid, but the original donors may be too distant from conjugation events to gain an advantage. To understand which consequence prevails, we performed further computer simulations allowing versus banning transfer from transconjugants. The advantage to donors is higher if transconjugants do not transfer plasmids, mainly when donors are rare and when the plasmid transfer rate (from donors) is high. These results show that conjugative plasmids are efficient biological weapons even if the transconjugant cells are poor plasmid donors. After some time, conjugative plasmids gain other host-benefit genes, such as virulence and drug-resistance.info:eu-repo/semantics/publishedVersio

    Harmful behaviour through plasmid transfer: a successful evolutionary strategy of bacteria harbouring conjugative plasmids

    Get PDF
    Conjugative plasmids are extrachromosomal mobile genetic elements pervasive among bacteria. Plasmids' acquisition often lowers cells' growth rate, so their ubiquity has been a matter of debate. Chromosomes occasionally mutate, rendering plasmids cost-free. However, these compensatory mutations typically take hundreds of generations to appear after plasmid arrival. By then, it could be too late to compete with fast-growing plasmid-free cells successfully. Moreover, arriving plasmids would have to wait hundreds of generations for compensatory mutations to appear in the chromosome of their new host. We hypothesize that plasmid-donor cells may use the plasmid as a ‘weapon’ to compete with plasmid-free cells, particularly in structured environments. Cells already adapted to plasmids may increase their inclusive fitness through plasmid transfer to impose a cost to nearby plasmid-free cells and increase the replication opportunities of nearby relatives. A mathematical model suggests conditions under which the proposed hypothesis works, and computer simulations tested the long-term plasmid maintenance. Our hypothesis explains the maintenance of conjugative plasmids not coding for beneficial genes. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.info:eu-repo/semantics/publishedVersio

    Chemical Characterization and Source Apportionment of Household Fine Particulate Matter in Rural, Peri-urban, and Urban West Africa

    Get PDF
    Household air pollution in sub-Saharan Africa and other developing regions is an important cause of disease burden. Little is known about the chemical composition and sources of household air pollution in sub-Saharan Africa, and how they differ between rural and urban homes. We analyzed the chemical composition and sources of fine particles (PM2.5) in household cooking areas of multiple neighborhoods in Accra, Ghana, and in peri-urban (Banjul) and rural (Basse) areas in The Gambia. In Accra, biomass burning accounted for 39–62% of total PM2.5 mass in the cooking area in different neighborhoods; the absolute contributions were 10–45 μg/m3. Road dust and vehicle emissions comprised 12–33% of PM2.5 mass. Solid waste burning was also a significant contributor to household PM2.5 in a low-income neighborhood but not for those living in better-off areas. In Banjul and Basse, biomass burning was the single dominant source of cooking-area PM2.5, accounting for 74–87% of its total mass; the relative and absolute contributions of biomass smoke to PM2.5 mass were larger in households that used firewood than in those using charcoal, reaching as high as 463 μg/m3 in Basse homes that used firewood for cooking. Our findings demonstrate the need for policies that enhance access to cleaner fuels in both rural and urban areas, and for controlling traffic emissions in cities in sub-Saharan Africa

    The Social Distancing Imposed To Contain COVID-19 Can Affect Our Microbiome: a Double-Edged Sword in Human Health

    Get PDF
    Hygienic measures imposed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and contain COVID-19 have proven effective in controlling the pandemic. In this article, we argue that these measures could impact the human microbiome in two different and disparate ways, acting as a double-edged sword in human health. New lines of research have shown that the diversity of human intestinal and oropharyngeal microbiomes can shape pulmonary viral infection progression. Here, we suggest that the disruption in microbial sharing, as it is associated with dysbiosis (loss of bacterial diversity associated with an imbalance of the microbiota with deleterious consequences for the host), may worsen the prognosis of COVID-19 disease. In addition, social detachment can also decrease the rate of transmission of antibiotic-resistant bacteria. Therefore, it seems crucial to perform new studies combining the pandemic control of COVID-19 with the diversity of the human microbiome.info:eu-repo/semantics/publishedVersio

    The power of dying slowly - persistence as unintentional dormancy

    Get PDF
    Persistence is a state of bacterial dormancy where cells with low metabolic activity and growth rates are phenotypically tolerant to antibiotics and other cytotoxic substances. Given its obvious advantage to bacteria, several researchers have been looking for the genetic mechanism behind persistence. However, other authors argue that there is no such mechanism and that persistence results from inadvertent cell errors. In this case, the persistent population should decay according to a power-law with a particular exponent of −2. Studying persisters’ decay is, therefore, a valuable way to understand persistence. Here we simulated the fate of susceptible cells in laboratory experiments in the context of indirect resistance. Eventually, under indirect resistance, detoxifying drug-resistant cells save the persister cells that leave the dormant state and resume growth. The simulations presented here show that, by assuming a power-law decline, the exponent is close to −2, which is the expected value if persistence results from unintentional errors. Whether persisters are cells in a moribund state or, on the contrary, result from a genetic program, should impact the research of anti-persistent drugs.info:eu-repo/semantics/publishedVersio

    Deforming tachyon kinks and tachyon potentials

    Full text link
    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed.Comment: To appear in JHEP, 19 pages, 5 eps figures, minor changes and one reference adde
    • …
    corecore