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ABSTRACT 

The paper presents the design and some simulated results of the attitude control of a satellite 

formation under study by the European Space Agency for the Next Generation Gravity 

Mission. The formation consists of two spacecraft which fly more than 200 km apart at an 

altitude from the Earth’s ground of between 300 and 400 km. The attitude control must keep the 

optical axes of the two spacecraft aligned with a microradian accuracy (pointing control). This 

is made possible by specific optical sensors accompanying the inter-satellite laser 

interferometer, which is the main payload of the mission. These sensors allow each spacecraft 

to actuate autonomous alignment after a suitable acquisition procedure. Pointing control is 

constrained by the angular drag-free control, which is imposed by mission science (Earth 

gravimetry at a low Earth orbit), and must zero the angular acceleration vector below 0.01 

microradian/s2 in the science frequency band. This is made possible by ultrafine accelerometers 

from the GOCE-class, whose measurements must be coordinated with attitude sensors to 
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achieve drag-free and pointing requirements. Embedded Model Control shows how 

coordination can be implemented around the embedded models of the spacecraft attitude and of 

the formation frame quaternion. Evidence and discussion about some critical requirements are 

also included together with extensive simulated results of two different formation types. 

 

KEYWORDS：drag-free control, pointing control, attitude control, gravimetry, hybridization 

1 Introduction  

The Next Generation Gravity Mission (NGGM) under study by the European Space Agency, 

will take advantage of the previous gravimetry missions GOCE [1] and GRACE [2]. It will 

consist of a long-distance formation of two satellites as in GRACE ( 200 kmnomd  ), where 

each spacecraft (S/C) will be controlled to be drag-free as in GOCE [3], [4]. As a significant 

advancement, satellite-to-satellite distance fluctuations will be measured by laser 

interferometry with an accuracy improvement of at least three orders of magnitude with respect 

to GRACE (see Table 1, row 3). The formation will fly in a polar orbit at an altitude of between 

330 and 420 km, depending on the formation type, either inline or pendulum. The satellites 

1, 2k   ( 1k   denotes the leader and 2k   the follower) fly on the same orbit in the inline 

formation, whereas, in the pendulum formation; they fly on slightly separated and crossing 

orbits. The range of the orbit altitude requires drag cancellation and formation control. 

Drag-free control is ensured by the ultrafine accelerometers of the GOCE mission. 

The paper focuses on the formation attitude control during the science phase, whose 

requirements are demanding because of several reasons. Intersatellite distance fluctuations 

must be measured along the satellite-to-satellite line (SSL) which is defined as the line joining 

the satellite centers-of-mass (CoM) 1C  and 2C  in Figure 1. In a low-Earth orbit, the SSL can 

be materialized - it becomes a measurable physical object - by differential global navigation 

system instruments (GNSI). For the same purpose, NGGM will also employ interferometry.  
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Figure 1 Sketch (not in scale) of the satellite-to-satellite line and of the laser beam.  

One property of laser interferometry is that any direction inside a laser beam, which is launched 

by either satellite and is imaged by the receiving optics of the companion satellite, materializes 

the SSL (see Figure 1). The receiving optics fixes the first axis 1kc


 of the k -th satellite, which 

must be perfectly aligned to the SSL by a 2D attitude control referred to as pointing control.  

Materialization errors occur because the SSL and the laser optical path do not coincide. An 

offset exists between CoM and optics, and the error magnitude can be shown to be of the order 

of the offset length k  times the tilt kq  between 1kc


 and the SSL. Error fluctuations limit the 

accuracy of the intersatellite distance measurement, which thus demands an upper bound to 

kq . Assuming 0.001 mk   and nanometric distance accuracy, the spectral density of kq  

must be of the order of 1 μrad/ Hz  as in Table 1, row 7. This is the first challenging 

requirement of NGGM with respect to previous missions as reported in Table 1. Figure 2 shows 

the spectral bound (solid line) of the 2D pointing control, and the so-called science 

measurement bandwidth (MBW)  

  0 11 mHz 100 mHzf f f    M , (1) 
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where intersatellite distance measurement requires the highest accuracy. Here the term 

’measurement’ refers to science measurements during the mission, and not to attitude control 

measurements. Science data requirements demand formation attitude to be the most accurate in 

the MBW as shown by the ’minimum bound’ in Figure 2 and by the ‘drag-free bound’ in Figure 

3. Outside the MBW, science data accuracy progressively relax and consequently attitude 

requirements. The angular accuracy around 1kc


 (the roll k ) is of the same order as in 

GRACE, but fluctuations must be rather slow in order to respect the angular-rate spectral bound 

of Table 1, row 9.  

 

Figure 2 Spectral density bound of the 2D pointing control.  

Table 1. Required bounds on attitude fluctuations of gravimetry missions  

No. Requirements GOCE  GRACE NGGM 
1 Orbit altitude [km] 250  500  330 (inline), 420 

(pendulum) 
2 Formation  None, single 

satellite 
Two inline S/C 
220 km apart 

Two S/C 200 km 
apart  

3 Intersatellite distance accuracy  None 10 µm [6] 0.005 μm/ Hz  
4 3D angular acceleration max 

value 2μrad/s    
1 [5] 1  1 

5 3D angular acceleration spectral 

density 2μrad/s / Hz 
    

0.1 [5] None 0.01 

5 3D attitude max value [mrad] 150 [5] 4 [6] See rows 6 to 9 
6 2D pointing max value (pitch 

and yaw) [mrad] 
See row 5 See row 5 0.02 

7 2D pointing spectral density None None 0.001 
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mrad/ Hz 
   

8 Roll max value [mrad] See row 5 See row 5 2 
9 3D angular rate spectral density 

mrad/s/ Hz 
   

0.01 [5] None 0.001  

The term ‘spectral density’ stands for ‘root of unilateral Power Spectral Density’ (PSD). 
Spectral density bounds refer to the MBW 

 

SSL materialization and fine pointing can be obtained if the axis of the launched beam is more 

closely aligned with the SSL than the laser beam divergence, which is around 0.1 mrad. This 

alignment cannot be achieved by star trackers because of their bias which is of the same order or 

even larger. Optical sensors capable of measuring the beam tilt are mandatory [7]. If each 

satellite can image the incoming beam of the companion satellite, it becomes capable of 

autonomous alignment once the incoming laser spot has been located and held in the optics 

field-of-view. Optical tilt sensors are complemented with a pair of star trackers for 

implementing optical link acquisition and providing roll measurements. Gyroscopes are shown 

to be of scarce help.  

A second set of requirements concerns the inertial angular acceleration (Table 1, rows 4 and 5) 

and the angular rate with respect to the local orbital frame of the mission, the so-called 

Formation Local Orbital Frame (FLOF), whose first axis 1o


 is directed along the SSL (see 

Figure 1). Their spectral density bounds in the MBW (Table 1, rows 4 and 9) are of the same 

order as in GOCE.  
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Figure 3 Drag-free bound and accelerometer noise. 

The spectral bound (angular drag-free bound, dashed line) is shown in Figure 3 until the attitude 

control Nyquist frequency max 0.5 / 5 Hzf T  , where T  is the control time unit. The bound 

has been designed to limit the errors of the accelerometer package which is employed by 

science to clean distance measurement from non-gravitational acceleration. The angular 

drag-free control is devoted to keeping angular acceleration below the required spectral bound. 

The same accelerometer package is employed for this purpose. The term ‘angular drag-free 

control’ is employed because it parallels the term ‘linear drag-free control’ [4]. Angular 

drag-free control is ideally required to zero the whole satellite angular acceleration, whereas 

linear drag-free control is required only to zero the non-gravitational accelerations, which 

justifies the term. 

The second challenging requirement is to make the attitude control to satisfy at the same time 

acceleration, angular rate and attitude spectral requirements. In other words, the spectral 

density of the attitude command must also respect the angular drag-free bound of Figure 3. The 

same constraint has been plotted in Figure 2 from the attitude standpoint. If we denote the 

drag-free spectral bound in Figure 3 with  aS f , the angular rate bound with  S f , and the 

pointing bound in Figure 2 with  qS f , the minimal attitude bound  ,minqS f  shown in 

Figure 2 (dashed line) is defined by 

         2
,min min , / , /q q aS f S f S f S f   . (2) 

Coordination between drag-free and pointing is referred to as ‘hybridization’, borrowing a term 

sometimes employed in the literature [8]. Hybridization usually refers to frequency 

coordination between inertial and position sensors with the purpose of enlarging position 

bandwidth (BW) and of guaranteeing sufficient accuracy despite poor accuracy and BW of 

position sensors. Here a control design solution is provided, as suggested by Figure 2, where the 

minimal attitude bound ,minqS  splits into two frequency bands. In the higher frequency band, 

say for 10 mHzf  , no attitude control effort need to be made since drag-free residuals 

already agree with pointing accuracy. In the lower frequency band, attitude control is 
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mandatory in order to cancel the drag-free residual drift and stabilize the attitude. Frequency 

decomposition naturally fits a hierarchical control scheme, where angular drag-free control is 

designed as a wide-band inner loop from DC up to the Nyquist frequency, and pointing control 

is designed as a narrow-band outer loop for guaranteeing attitude stability.  

 

Figure 4 Block diagram of the hierarchical attitude controller.  

The block diagram of the hierarchical attitude control system (ACS) is shown in Figure 4. The 

commanded torque and force vectors (the force is the output of the orbit and formation control 

[9]) merge in the dispatching law which provides the thrust vector to the satellite propulsion 

assembly. The attitude controller is the cascade, from right to left in Figure 4, of the pointing 

and roll controller (on the right side) and of the drag-free controller (on the left side). The latter 

builds up the overall attitude command by combining pointing and roll command with the 

drag-free one.  

Hybridization requires that the ’hybridization signal’ in Figure 4 is dispatched by the drag-free 

controller to the pointing embedded model. The signal looks like a feedback signal, but it is not. 

The signal simply bears out the Embedded Model Control principle [10], [11], [12], that the 

‘internal (or embedded) model’ [13], [14], part of a control unit, must be driven by the same 

command which is dispatched to the plant. In fact, the signal is just the estimate of the residual 

acceleration which the drag-free controller actuates on each satellite. This concept is further 
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clarified by interpreting the whole drag-free controller in Figure 4 (state predictor and control 

law) as the attitude drag-free actuator. Double-sided arrows indicate the command signals 

entering both satellite and embedded models. 

Coordinated attitude control of spacecraft formations is usually approached with the 

leader-follower strategy [15], [16], [17]. Each spacecraft follows another spacecraft in the 

formation, except the leader who tracks the absolute desired attitude trajectory of the 

formation. Another approach tries to decouple the individual attitude controller from the 

coordinated controller, in the sense that each spacecraft generates its own reference signals 

using the available information from other spacecraft [18]. This is similar to the present 

concept, since each spacecraft builds up the proper reference attitude from the differential 

GNSI measurements and from the incoming laser beam. In the present case of two spacecraft, 

the attitude reference turns out to be equal to the FLOF quaternion.  

As shown by Figure 4, control functions are organized around two embedded models explained 

in Section 2. A third one is part of the FLOF generator. They include the controllable dynamics, 

namely thruster-to-accelerometer dynamics and spacecraft attitude dynamics, and a disturbance 

dynamics capable of describing the unknown disturbance class to be estimated and rejected. 

Disturbance dynamics generalizes the additional integrator of the extended state observers 

(ESO, [19]) in three ways. (i) State equations may have any order. (ii) The layout of the input 

noise vector must be designed in agreement with model uncertainty [3]. (iii) Each noise 

component is estimated by a dynamic filter- the noise estimator- driven by the model error, i.e. 

by measurement minus model output. The design of the dynamic filter will be referred as ‘noise 

synthesis’. The role of disturbance dynamics is essential for the drag-free and pointing control 

design. As such, the design methodology of this paper, to the authors’ knowledge, has no 

counterpart in the literature, except for the GOCE control design [3], [4]. The Design of 

spacecraft attitude control in the presence of disturbances has only recently received attention 

by the literature, but adopting standard ESO [20], [21]. One reason is that when high accuracy is 

demanded, spacecraft are placed at high-Earth-orbits where external disturbances become very 

low, and attitude dynamics is only perturbed by known gyro torques and appendage slow 
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vibrations [20]. A first-order ESO is usually sufficient to cope with their uncertainty. The 

spacecraft formation under study does not fall into this category.  

The paper is organized as follows. Section 2 derives the three embedded models which are the 

core of the attitude controller. Each model is stabilized by a linear dynamic feedback, the ‘noise 

estimator’. Since quaternion dynamics, which is part of two models, is nonlinear, closed loop 

stability is proved with the help of a linear error equation. Section 3 explains and justifies 

hierarchical control design, and explains how the closed-loop eigenvalues of the three 

embedded models are optimized for achieving at the same time stability and performance. A 

special attention is devoted to ‘hybridization’ which drives the pointing controller design. 

Analytic design and simulated results point out some design criticalities. Recovery modes are 

also mentioned. This article is a revised and enlarged version of a conference paper [22]. 

2 Modeling 

2.1 Frames of reference 

Three main frames are necessary. (i) The Earth centered inertial frame  1 2 3, , ,EC i i iJ
  

 has 

the origin in the Earth CoM EC . (ii) The FLOF (Figure 5)  1 2 3, , ,C o o oO
  

 is defined by the 

position vectors 1r


 and 2r


 of the leader and follower satellites, and has the origin in the 

formation CoM C . (iii) The control frame  1 2 3, , ,k k k k kC c c cC
  

 of each satellite, 1, 2k  , 

has the origin in the CoM kC . The control frame though different from the body frame, can be 

confused with the latter one in the present treatment. The FLOF is defined by 

 1 2 1
1 2 3 1 2

1 2 1

,  ,  
r r r o

o o o o o
r r r o

 
   

 

       
      (3) 

where  

 1 2
1 2 ,  ,  

2

r r
d r r r r r r 
    

     
. (4) 
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Figure 5 Formation local orbital frame for a pendulum formation. 

Figure 5 shows the FLOF of a pendulum formation where polar orbits are separated by 

offsetting the right ascension of the ascending node. The SSL direction is 1o


. The FLOF to 

inertial transformation is denoted by i
oR  and the relevant quaternion by oq ; it will be referred 

to as the ’FLOF quaternion’. The axis 1kc


 is the axis to be aligned with 1o


. The control to 

FLOF transformation is denoted by      o
ck k k kR Z Y X    and the quaternion kq is 

referred to as the ‘local control quaternion’. Pointing control is concerned with k  (yaw) and 

k  (pitch). The ‘local quaternion’ in the inertial frame holds ck o k q q q , where the symbol 

  denotes quaternion multiplication. Since subscript k  will be hereafter dropped, previous 

quaternion equation is rewritten as 

 c o q q q . (5) 

Scalar and vector components of a quaternion are defined as follows 

 
1

0 2

3

1
,  

/ 2

q

q q

q





   
                   

q
q

q . (6) 

The rightmost approximation in (6) holds when Euler angles are very small, i.e. 

, , 1 rad    , which is the present case.  
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2.2 Embedded and design models  

Embedded Model Control distinguishes between the design and embedded model. The design 

model provides definition and realization of the class of the ‘true’ performance variables, say 

the local quaternion q  in (5). The embedded model is the core of the control unit: state 

variables are marked by a hat like q̂  and are available as control signals. Other variables such 

as noise and errors are marked with a bar like w . Errors between embedded model variables 

and ‘true’ variables, say 1ˆ ˆq
 e q q , are the key performance variables. In the Kalman filter 

framework errors like ê  are referred to as prediction/estimation errors, here as ‘design errors’. 

The embedded model, in the discrete-time (DT) form, is enriched with uncertainty/disturbance 

dynamics, whose state variables are the repository of the past uncertainty. Disturbance 

dynamics may be assumed to be stochastic dynamics and is driven by a DT white noise to be 

real-time estimated. Angular accelerations are denoted either with the symbol a  when 

radian/s2 is the unit, or with α  when the radian is the unit. The embedded model minimal time 

unit is the same as the attitude control and is denoted by 0.1 sT  . DT instants are denoted by 

it iT  or simply by i . Measured variables are marked by a round hat as q . 

The model is subdivided into three parts: (i) the FLOF quaternion dynamics (subscript o ) 

predict reference quaternion, angular rate and acceleration, (ii) the attitude dynamics (subscript 

q ) predict spacecraft attitude and disturbance, (iii) the thruster to accelerometer dynamics (or 

drag-free dynamics) (subscript a ) predict the environment acceleration to be cancelled. The 

section ends with the derivation of the error equation of q̂e , which lays the ground for the noise 

estimator design.  

2.3 FLOF dynamics 

The FLOF design model is just the quaternion kinematics 

 
       
     

0/ 2,  0o o o o o

o o o

t t t

j j j

  

 

ωq q q q

q q e


 , (7) 

where oq
  is the measurement which is computed from differential GNSI data using the FLOF 

definition (3) and the mean orbit angular rate nom : 
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   1
1.18 mrad/s,  2 0.2 mHzo nom nom nomf     ω , (8) 

GNSI measurements are sampled at jt jNT , 1N  . The angular rate oω  and the 

acceleration oω , to be employed as reference signals by attitude control, are unknown and 

must be estimated. The embedded model consists of the DT version of (7) and of third-order 

stochastic dynamics, which latter accounts for the class of the unknown signals. The model is 

written as follows 

 
         
       

0

0

ˆˆ ˆ ˆ ˆ ˆ1 / 2,  0

ˆ ˆ ˆ ˆ1 ,  0

o o o o o o o o

o o o o o o

j c j s j j

j A j j

    

   

v

x x w x x

q q q q q
, (9) 

where,  

 

     
     

1

2 3

3

ˆ ˆ ˆcos / 2 , sin / 2 / / 2

ˆ ˆ ˆˆ ˆ,  ,  1

ˆ0

ˆˆ0 ,  , ,

ˆ0 0

o o o o o

o o o o o

o o

o o o o o

o o

c NT s NT NT

j j NT j

I I

A I I I I

I

  



 

  

    
           
         

ω v ω

v w

x α w w

s w

q . (10) 

All the state variables are in radian units: ˆ ov  is a DT angular rate, ˆ oα  is the low-frequency 

component of oω  and ˆos  is a DT jerk. ow  is an unknown zero-mean arbitrary vector (noise 

for short) driving the stochastic dynamics in (9). When 1N  , (9) should be propagated during 

any step j  to match the attitude control times iT . In reality, since the attitude control BW is 

close to max0.002 0.01 Hzf   and 10N  , propagation becomes not strictly necessary, and for 

simplicity’s sake we assume 1N   and j i . The third-order model of the angular rate is 

justified by the FLOF acceleration oω  not being zero, but dominated by the orbit first 

harmonic as in 

     3 2
1 1 1sin ...,  10  rad/so o nom ot t     ω a a , (11) 

where nom  has been defined in (8). Step-wise interpolation of (11) would correspond to 

second-order dynamics in (10) and to an error of about 6 2
1 2 10 rad/so nom o T    ω a . 

As a consequence, the attitude error would turn out to be close to 2 rad , of the same order of 

the pointing accuracy in Table 1. Adopting third-order dynamics as in (10) eliminates the issue. 
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2.4 Attitude dynamics  

The design model of the local attitude q  in (5) is the following  

 

       
          
          

0

1
0

1

/ 2,  0

/ ,  0c
u d o o

u d u

t t t

t J t t d R dt

t J t t t t





  

   

   

ω

ω M M ω ω ω

a M M a d

q q q q

 , (12) 

where a  is the spacecraft acceleration to be ideally zeroed in the MBW. The rightmost term in 

the second equation approximates the FLOF acceleration defined in (11): 

   /c c c
o o o o o o od R dt R R   ω ω ω ω ω  . (13) 

In (12), uM  is the commanded torque in control coordinates, dM  is the total disturbance 

torque in control coordinates, and includes gyro, gravity gradient and aerodynamic torques, J  

is the inertia matrix. Commanded torques are actuated by a thruster assembly. Gyro and gravity 

gradient torques, though depending on angular rate and attitude, are not explicitly reported, 

since they are treated as unknown components of dM , ready to be cancelled by drag free 

control.  

The embedded model is the same as in (9), except that the noise vector qw  is accompanied by 

the residual acceleration α  - the hybridization signal - which is generated by the drag-free 

embedded model, and by the FLOF acceleration ˆ oα  in (10). The model is written as 

 

             
            
         

0

0

1

ˆˆ ˆ ˆ ˆ ˆ1 / 2,  0

ˆˆ ˆ ˆ ˆ1 ,  0  

ˆ ˆ

q

q q q q o q q q

o c q

i c i i s i i i

i A i B i i i

i i i i i

    

     

   

v

x x α α w x x

q q q q q

q q q q e 
, (14) 

where c  and s  have similar expressions as oc  and os  in (10), the vectors ˆ qx  and qw  

have similar components as the vectors in (10) upon subscript change, and the matrices hold 

q oA A  and  0 0T
qB I . In agreement with (5), the local attitude measurement q  is 

obtained from the FLOF quaternion prediction ˆoq  in (9) and from the control quaternion 

measurement cq
  in (14). cq

  is computed by combining star tracker and optical metrology 

data. qe  is the model error.  
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To better understand how the second equation in (12) matches its counterpart in (14), the 

equation of the angular rate ˆˆ q Tv ω  - in radian units - is made explicit: 

 
           
       

1

2
1

ˆ ˆˆ ˆ1

ˆ

q q q q o

q q

i i i i i i

i T i i i

     

  

v v α α w α

a α α w
. (15) 

In (15), the estimated residual α  is corrected by the unknown disturbance 1ˆ q qα w , which 

accounts for accelerometer errors, and includes bias, drift and noise. In other terms, 

accelerometer errors are modelled in (15) as an unknown disturbance to be rejected by the 

attitude control [23]. More specifically, only the prediction ˆ qα  will be explicitly rejected. 

Rejection aims to keep the drift of the integrated residuals in Figure 2 - the dotted line diverging 

toward the left side - below the pointing bound in the same Figure. The noise term 1qw  cannot 

be predicted and is not rejected. The model (14) is affected by a neglected dynamics qP , 

which includes thruster dynamics and attitude sensor delay. The known part of the delay may 

be included in (14), but to be conservative, qP  is assumed to include the whole delay. 

2.5 Drag-free model 

The acceleration measurement a


, sampled at iT , is related to a  in (12) by a linear dynamics 

aP  which accounts for the dynamic chain from thruster to accelerometer, and includes 

second-order thruster dynamics (see Table 3). Using Z-transform we write  

 
       
      2

1ˆ

a a

a q q

z z z z

i T i i

 

  

a P a d

d α w


, (16) 

where ad  denotes the accelerometer errors and is estimated by the unknown disturbance ˆ qα  

in (15). GOCE drag-free control design [4] has shown, and experimental performance has 

confirmed that aP  in (16) can be approximated by a delay of length T . The transfer function 

of the neglected dynamics can be written as      1
3a a az z z I  P M P , where 

  1
3a z z IM  accounts for the model delay. The embedded model writes as 

 
         
     

0ˆ ˆ ˆ ˆ1 ,  0

ˆ
a a a a u a a a

a a a

i A i B i i

i C i i

    

 

x x a w x x

a x e
 , (17) 
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where ae  is the model error and ua  is the whole attitude and drag-free command. The noise 

vector aw  has the same components as ow  in (10) and qw  in (14) upon subscript change. 

Matrices and vectors have the following components 

  
ˆ0 0

ˆ0 ,  ,  , 1 0 0

ˆ0 0

a

a a q a a a

a

I

A I I B B C

I

  
       
     

z

x a

s

.  (18) 

All the variables in (18) are angular accelerations [rad/s2] and ˆ az  is the delayed measurement. 

2.6 Design error equations  

2.6.1 Error definition 

Models (9), (14) and (17) point out the synthesis problems to be done at each step i :  

1) to estimate the vectors  o iw ,  q iw  and  a iw  for updating disturbance/uncertainty 

dynamics; 

2) to predict the command  1u i a  which will be actuated during the next time step, 

3) to estimate the residual acceleration  iα  - in radian units - entering (14). 

The following errors are the performance variables of the control design.  

1) The design error (usually prediction/estimation error) is defined by ˆ ˆv  e v v , where v  

and v̂  are the state vectors of the design and embedded models: it is the performance 

variable of the noise (estimator) synthesis.  

2) The true tracking error is defined by v  e v v , where v  is the reference variable: it is 

the performance variable of the command synthesis.  

The above errors converge to each other if    ˆ 0i i v v , in which case control design 

restricts to the noise synthesis. Assuming the above convergence sounds reasonable, since v̂  

and v  are just model variables generated by the embedded models. In reality, because the 

estimated noise vectors  iw  cannot be predicted and rejected, the zero limit cannot be 

reached, but it remains a desirable target and may be referred to as the ‘anti-causal limit’ as in 

[11], [12]. Therefore, noise synthesis turns out to be the main tool for guaranteeing performance 

and stability. In fact, drag-free command only actuates disturbance rejection and only depends 
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on the noise synthesis (Section 3.3). Pointing and roll command include also reference and state 

feedback, but state feedback, despite being essential for attitude stability, is just tuned not to 

worsen noise synthesis performance (Section 3.4). In the next two sub-sections, analysis of the 

design error equations proves that noise synthesis becomes linear and time invariant (LTI) also 

in the case of quaternion equations, and that tunable parameters are the disturbance dynamics 

order and the state predictor BW (Proposition 1). The second parameter is obvious, but the 

former goes beyond ESO literature. 

2.6.2 Design error equations 

We derive the error equation of the attitude model (14). Similar equations apply to the FLOF 

model (9) and to the drag-free model (17). In the Appendix, Section 6.1 , the DT equation of the 

vectorial part ˆqe  of the design error 1ˆ ˆq
 e q q  - see (6) - is shown to satisfy 

               0ˆ ˆ ˆ ˆ ˆ ˆ1 ,  0q q q qi I i T i i i T      e ω e ω ω e e . (19) 

Equation (19) must be related to the measurement q  in (14) and to the ‘true’ model error 

1
q

 e q q  which is not measurable. The measured error qe , defined in (14), which is 

available in the control unit, is related to q̂e  through the equality 

                1 1ˆ ˆ ˆq q q qi i i i i i i i       e q q q q e e e
. (20) 

Equation (19) must be completed with the error equation of ˆ qx , which has the same form as 

(14), namely  

           01 ,  0q q q q q q q qi A i B i i    x x w w x x    .  (21) 

In (21), qx  is a 3 3  vector as ˆ qx  and has 3–dimensional components , 1, 2,3qh h x . The 

first component  1 ˆq T x ω ω  is the input vector of (19). Discrepancies between (12) and 

(14) are confined into qw  through the equality  

  
          

       

1 1 ˆ ˆ

ˆ1

i T

q d a qiT

o o
c o c o o

i T J i d i

T R i R i i

 
    

   

w M a α

ω ω α
, (22) 
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which is obtained, after some substitution, from (12), (14) and the control laws which are 

derived in Section 3. The left bracket in (22) contains drag-free residuals, but they are cleaned 

from the accelerometer drift ˆ qα  which is predicted by the attitude model (14). The right 

bracket is the design error of the FLOF acceleration oω  in (11), and combines GNSI 

measurement errors and errors due to higher-order gravity harmonics. A nonlinear term 

   ˆ ˆqi T iω e  of the order of   2

q te  can be eliminated from (19), which turns out to be LTI 

and decoupled like (21). This assumption holds due to the following inequalities from Table 1: 

 
1 1ˆ 5 rad 2 mrad (roll)

ˆ 5 rad 20 rad,  2,3 (pitch and yaw)

q

j qj

T e

T e j

 

  

  

   
.  (23) 

As a result, error equations (19), (20) and (21) convert into a series of four 3-dimensional and 

decoupled integrators, driven by qw  and qw , which is written in compact form as  

 
         
     

01 ,  0e e e e q e q e e

q e e q

i A i B i G i

i C i i

    

 

x x w w x x

e x e

   


, (24) 

and has the following matrices and vectors  

 

 

3

9

ˆ0 00
,  ,  ,  

0

0 ,dim 9 dim 1

 

2

q
e e e e

q q q

e q e

I
A G B

A BI

C I

      
         

      
   

e
x

x

w x





. (25) 

Equation (24) is observable by qe  and controllable by qw .  

2.6.3 Stability of the error equations 

Assuming that qw  and qe  are independent of ex , (24) can be stabilized by the 

output-to-state feedback  

      q q qz z zw L e , (26) 

where Z-transform has been adopted since the feedback gain  q zL  is in general a transfer 

matrix. The feedback (26) will be referred to as ‘noise estimator’, and applies to each of the 

embedded models upon replacement of the subscript q  with o  and a . The input-output 

closed-loop transfer matrix holds 
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           

        
     

11 1

1

,  

e e e q e q

e e e e q e e q e

e q e e e q

z z z z z z

zI A B I zI A G z C

zI A G z





 



 

    

 

x S M w V e

M S L

V S L



. (27) 

In (27), eS  is the sensitivity matrix and q  is the spectrum of the closed-loop dynamic 

system which consists of (24) and (26). q  is referred to as the ‘state-predictor spectrum’, 

though the state predictor, which consists of (12) and (26), is nonlinear. Stability of eS  is not 

sufficient if qw  and qe  depend on ex . To simplify stability conditions, we assume that 

only qw  is state-dependent as follows  

        0 , , ,  1q q q q q e qi i W i i W  w w y y x   , (28) 

where qy  is the prediction error of an exogenous variable qy , like the total disturbance 

torque dM  in (12), which is predicted by (14). The small gain theorem [28] guarantees 

closed-loop stability if 

    
max

max , 1e q e qf f jf jf W S M . (29) 

Here the main purpose is to prove that under (28), qW  tends to decrease as soon as the 

prediction ahead time h  decreases and the order n  of the disturbance dynamics increases. 

The result offers the designer tunable parameters for guaranteeing stability and performance. 

Proposition 1. Consider (28) and assume that the exogenous vector  q ty , dim q my , is 

a bounded signal with bounded derivatives  n
qy . Assume that the matrix   ,q qW t ty  is a 

sector-bounded function of the prediction error ˆq q q y y y , i.e.  

 
  
 

,
,  0 , 1,...,

q q

qj qj qj
qj

W t t
W W W j m

y t
    

y


, (30) 

where qjy  is a component of  q ty . Let n  be the order of the disturbance dynamics in charge 

of predicting   ,  0q t h h y . Then 

         2
1,... 0, , max max n

q j m qj h qW t t m n W t h    y y , (31) 

where  ,m n    is a constant, maxq j jqy , qW  is the matrix of the absolute values of 

qW  and 1,...max j m qjW  is obtained componentwise. 
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Proof. Assume 2n   for simplicity’s sake. The prediction at t h  can be ‘exactly’ written as 

the sum of the prediction  ˆ q t hy , available at time t , and of the prediction error  q t hy . 

Let us start from the exact expansion of  q t hy : 

 
           1 2 2

0 1 2 / 2

0 ,  0,1, 2

q q q q

k

t h t t h t h

h k

  



      

  

y y y y
. (32) 

Further expansion around t  of the zero- and first-order terms in (32) yields the final 

expression: 

 

     
         
             

1
0

2 2 22 2
0 1 1 2

ˆ

ˆ 1 /

/ 2 / 2

0 ,  0,1,  0 ,  0,1,2

q q q

q q q

q q o q q

j k

t h t h t h

t h t t h h

t h t t h t h

h j h k



    

 

    

   

      

     

y y y

y y y

y y y y




. (33) 

The prediction  ˆ q t hy  is the free response of a second-order integrator. The prediction 

error, which depends on the unknown    2
q t y , is bounded by  

      2 2
0max 5 / 2q h qt h t h    y y . (34) 

Using (30) and (34), and the norm definitions in the Proposition statement, one finds the 

inequality  

 
        

 

2 2
1,... 0, , 2 max max

,2 5 / 2

q j m qj h qW t t m W t h

m m

 



   



y y
, (35) 

which can be extended to arbitrary n  as in (31). □ 

Remark 1. The ahead time h  corresponds to the predictor time constant, which is fixed 

by q . Decreasing h  forces the predictor bandwidth to increase, in agreement with 

high-gain observer theorems [29]. Moreover, since the predictor BW is bounded in order to 

attenuate the neglected dynamics effect, the low-frequency slope of the sensitivity eS  in (29) 

which is proportional to n  [11], [12], offers a further degree of freedom.  
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3 Hierarchical control design  

3.1 Control requirements and rationale 

Drag-free and pointing/roll controllers are strictly designed around the embedded models (9), 

(14) and (17). Three basic principles, coordinate decoupling, hierarchy and frequency 

coordination guide the design. 

1) Decoupling allows the 3D error equation in (24) to split into three separate 

single-input-single-output models. 

2) Hierarchy allows to write ua  in (17) as the sum of the drag-free command DFa  and of 

the pointing/roll command PRα  (in radian units): 

 

     
   
              

2/

ˆ ,

ˆ ˆ ˆ ˆ, ,

u DF PR

DF a a

PR o o q a q c v c

i i i T

i i

i i i K i K i



   

 

 

   

a a α

a a

α α α q v

. (36) 

In (36), a  is the spectrum of the drag-free predictor which consists of (17) and of a 

feedback term like (26). o  is the spectrum of the FLOF generator which consists of the 

equation (9) and the output feedback (26). q  enters (27) and c  is the spectrum of the 

controllable dynamics in (14), when it is closed by the state feedback of the third equation 

in (36).   

In (36) DFa  is ideally designed to zero the acceleration a  in the MBW, which objective 

is obtained by cancelling the predicted acceleration ˆ aa  of (18). PRα  is ideally designed 

to zero local control attitude, angular rate and acceleration in (12), i.e. to achieve 

 

       

     
     

0

1 1

/ 2 0

0

0

c o

o

iT q iT i
iT

iT iT iT

iT iT iT

   
     

  
  

  

q

ω ω ω

ω a ω

q q

 
. (37) 

The symbol   indicates that the control to FLOF transformation has been neglected, i.e. 

3
c
oR I . In order to achieve (37), PRα  must track the FLOF acceleration ˆ oα , cancel the 

drift ˆ qα  and include a state feedback for stabilizing attitude and angular rate.  
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3) Hybridization, namely frequency coordination between inner and outer loop, makes the 

overall spectral requirements to be met.  

Actual requirements are expressed in terms of spectral densities, and only concern random 

components. Deterministic components, mainly due to orbit harmonics, must be bounded by 

the RMS of each spectral line, a requirement not reported in Table 1. Acceleration and attitude 

requirements are given in terms of the spectral matrices 2
aS  and 2

qS  by the following 

inequalities 

 
   

     
2 2

3

2 2 2 2 2 2
1 ,min ,min

0

0,  diag , ,

a a

q q q q q q

I S f f

f f S S S

 

  

S

S S S
, (38) 

where 1qS  refers to roll and ,minqS , defined in (2), refers to pointing control. Similar 

inequalities apply to ω  in (37). The bounds aS  and ,minqS  are plotted in Figure 2 and Figure 

3, respectively. 

3.2 Coordinate decoupling 

Coordinate decoupling splits the estimate of the 3D noise vectors in (9), (14) and (17) into three 

single-input noise estimators, and the feedback transfer matrix  q zL  in (26) becomes 

diagonal. Decoupling is not mandatory. For instance, by adopting Kalman filter approach, the 

whole feedback gain  q qz LL  would become static and determined by the joint covariance 

of input and output noise. Three reasons prevent this approach. 

1) The noise covariance of qw  is not available. This difficulty may be bypassed by 

designing an equivalent spectral density, where ‘equivalent’ means that is shaped in a 

manner to envelope the disturbing torque class. This is exactly the way that will be 

employed here for tuning closed-loop eigenvalues. 

2) The driving noise qw  and the model error  q ie  in (24) depend on the model state in an 

uncertain way, which requires robust eigenvalue tuning. 

3) The noise estimator (26) may be required to be a dynamic feedback, in which case, as 

shown in the Appendix, the state predictor is not equivalent to a Kalman filter.   
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Robust eigenvalue tuning is greatly simplified by coordinate decoupling. Decoupling is also 

suggested by the error equation (24) as it is LTI and decoupled. A decoupled tuning must 

guarantee stability and performance versus state dependent uncertainty. Small gain theorem 

will be employed to the purpose, and design error will be replaced by tracking error. 

3.3 Hierarchy: drag-free control design  

Hierarchical control aims at tuning the four spectra ,  , , ,h h a o q c   entering (36) in order to 

guarantee the target inequalities (38). Tuning is tackled in a hierarchical way. 

1) Estimation of ˆ aa  (drag), ˆ qα  (accelerometer bias and drift) and ˆ oα  (FLOF) in (36) is 

decoupled. Drag is estimated from accelerometer measurements, bias and drift from 

attitude sensor measurements (a pair of star trackers and optical metrology), FLOF 

acceleration from GNSI measurements. Decoupling is coherent with Figure 6, which 

compares the angular drag-free bound with the doubly integrated noise of the attitude 

sensors. Also the doubly integrated noise affecting ˆ oα  in (36) and due to differential 

GNSI is shown (dashed line).  

2) Tuning of the four spectra is done in sequence, by firstly requiring that the drag-free 

spectrum a  guarantees the former inequality in (38). The last three spectra are then 

tuned to satisfy both inequalities in (38) as outlined in Section 3.4.  

 

Figure 6 Angular accelerometer error compared with attitude sensor noise. 
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Let us D  and aD  denote the classes of the disturbance d  in (12) (drag) and of ad  in (16)

(accelerometer error) which are estimated by ˆ aa  and ˆ qα . The class D  is defined by 

expanding the generic component ,  1, 2,3kd k  , as follows 

      
0

sin 2k kn nom nk krn
d t d n f d t 


   , (39) 

where nomf  is defined in (8). In (39) krd  is a wide-band colored noise accounting for thruster 

noise. The line spectrum knd  accounts for the drag periodic components that decay in 

proportion to 2n . In the frequency band 0 0.01 Hzdf f  , the PSD  2
d fS  of d  is 

dominated by krd  and is bounded by 

 
      22 2 2

3 3 0 0 1

6 2 9 2
0 0 1

/

5 10  rad/s / Hz,  0.03Hz, 1 10  rad/s / Hz

d d d d d

d d d

f I S f I S f f S

S f S 

  

    

S
. (40) 

Figure 6 points out that star trackers may improve the estimation accuracy of d  for nomf f  

and optical sensors for 0df f . A similar inequality to (40),    2 2
3da daf I S fS , defines the 

class aD . Proposition 2, below, gives sufficient conditions for the residual acceleration a  to 

satisfy (38). In this case, the noise estimator (26) simplifies into the static feedback 

    a a ai L iw e   (41) 

since the size 3 3wn    of the noise vector in (17) is the same as the state vector (see the 

Appendix, Section 6.2). The drag-free controller sensitivity aS  is defined as the DT transfer 

matrix from the ‘true’ disturbance  iTd  to the residual acceleration  iTa  in (12), after 

having zeroed other exogenous signals, namely 

 
     
   

a

a a

z z z

z I z



 

a S d

V S
. (42) 

Sensitivity and complementary sensitivity aV  are diagonal matrices due to decoupling.  

Proposition 2. Under the disturbance classes D  and aD , a sufficient condition for DFa  in 

(36) to guarantee the first inequality in (38), is that any component of a  satisfies the spectral 

inequality  

         max, , , 1 , 2 2,  a a a a sa a a va a aW f W f W f f f            , (43) 
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where  

 
             

     

2 22 2 21
sa a d a da PR

a

va a a

W f f S f f S f S f
S f

W f jf P jf

  

 

S V

V

, (44) 

and PRS  is the spectral bound of the pointing/roll command in (36). 

Proof. As a sketch of proof, let us rewrite the Z-transform of  iTa  in (12) as follows 

            2 ˆ/u PR az z z z T z z    a a d a a d . (45) 

Then compute ˆ aa  from (17) and (41), with the help of (42), which yields  

 
          
     

ˆ a a a a

a a

z z z z z z

z z z z

  

 

a V d d e

e P a
, (46) 

where the neglected dynamics aP  is bounded by    a ajf P jf  P  and ae  is the ‘true’ 

model error as opposed to the measured error ae . Replacing (46) in (45) provides 

                  1 2/a a PR a a az I z z z T z z z z


    a V P a S d V d . (47) 

Using small gain theorem, a sufficient stability condition is 

     1a a ajf P jf   V .  (48) 

The inequality (43) derives from (48) and by rewriting the first spectral inequality in (38) with 

the help of (47).□ 

The LHS term in (43) can be minimized with respect to a  in order to guarantee a design 

margin. Optimization has been performed by fixing 0.5a  , by assuming 0PRS  , and by 

simplifying the complementary spectrum 1a a    into a single unknown parameter as

 , , 2a a a a    .  

The functional  
max0max 0.5,f f a a aW      and the components in (43) are plotted in Figure 7 

versus 2a af T  . The optimal solution falls in the range 0.2 0.3a   and corresponds to 

the frequency band 0.3 0.5 Hzaf  . The drag-free control looks feasible in the large since 

the functional (43) is less than unit in the decade 0.07 0.6a  . Figure 7 shows the 

magnitude diagram of aS  and of aV  in (42). In the same Figure, asW  decreases for af  
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increasing, which fact is in agreement with drag cancellation. The opposite behavior of avW , 

which depends on the neglected dynamics through a aPV , places an upper limit to the 

drag-free BW af . 

 

Figure 7 Left: design functional. Right: sensitivity and complementary sensitivity.  

One may wonder why the noise estimator (41) has not been optimized as a steady-state Kalman 

feedback. The reason is that the model error ae  in (46) is noise free, since the accelerometer 

noise ad , from DC to the Nyquist frequency, has been treated as an input disturbance. At the 

same time ae  is affected by neglected dynamics, and the latter substitutes the measurement 

noise in (43). 

3.4 Hybridization: pointing control 

Because of the sub-milliradian bounds in Table 1, the ‘true’ attitude components become the 

entries of q  in (6). Each of the pointing components 2q  and 3q  must satisfy the spectral 

bound in Figure 2. The roll 1q  is only required by Table 1, row 8, to be bounded in time, and to 

have smooth fluctuations as required by the angular rate bound in Table 1, row 9. A roll spectral 

bound can be adjusted as in Figure 8, by combining the integrated bound of the angular rate 

with the temporal bound. Figure 2 is repeated in Figure 8 by adding the spectral density of the 

star tracker noise and of the optical metrology noise.  
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Figure 8 Pointing and roll bound compared to attitude sensor noise.  

Figure 2 and Figure 8 suggest decomposing pointing and roll control objectives as follows: 

1) to cancel the accelerometer drift and bias in the frequency band 1 mHzf   (the leftmost 

drift in Figure 2), 

2) to filter the optical metrology noise for 10 mHzf   in order to respect the pointing limit 

imposed by the drag-free bound in Figure 2, 

3) to bound the satellite attitude versus the neglected dynamics qP .  

The combination of the former two objectives is referred to as ‘hybridization’. They are each 

other contrasting, implying that the problem may be unfeasible. In fact, it will be shown that, 

given present requirements and noise spectral densities, the pointing bound in Figure 2 can only 

be approached from above especially in the frequency band 1 mHz 10 mHzf  .  

Unlike drag-free control design in Section 3.3, the third objective is dominated by the second 

one as in the Kalman filter approach, since the control BW of the frequency coordination 

becomes much smaller than the BW which guarantees the attitude to be bounded versus qP . 

Kalman optimization cannot be pursued since a noise estimator which is capable of providing 

qw  in (14) cannot be static as in (41), but it must be dynamic as proved in the Appendix, 

Section 6.2. In fact, the size 3 3wn    of qw  is less than the size 4 3 3 1 12n       of the 

state vector (the quaternion constraint has been accounted for). Moreover, it is shown in the 
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Appendix, Section 6.3, that the resulting state equation belongs to a class of state predictors 

which is different from stationary Kalman filters.  

One may wonder why a static estimator is not employed, despite the different size of noise and 

state vectors. Indeed, it could be employed, but a parasitic noise should be inserted in the 

quaternion equation (14) to the detriment of the closed-loop complementary sensitivity 

q qI V S . In fact, under a static feedback, the high-frequency asymptote of qV  only decays 

of -20 dB/decade, but, under a dynamic feedback, it decays of -40 dB /decade, without any 

price to be paid by qS . A larger decay helps approaching the second control objective - sensor 

noise filtering - without penalizing sensitivity. 

Because of the unitary difference   / 3 1wn n n    , a first-order dynamic feedback is 

sufficient, namely 

 
       
     

1 1q q q q

q q q q q

i i i

i N i L i

   

 

p p e

w p e
 (49) 

The gain matrices qL  and qM  in (49) together with the feedback gains qK  and vK  in (36)

, are tuned so as to satisfy the three previous objectives.  

Before dealing with gain tuning, we must prove that the estimate α  of the residual acceleration 

in (14) – the ‘hybridization signal’- drives the attitude predictor in the same manner as the 

drag-free controller actuates the spacecraft. We require that  

      PR DFi i i α α α , (50) 

where PRα  is the pointing/roll command and  DF iα  is the estimate of the wide-band 

drag-free residuals, in radian units, driving the attitude. With the help of (17) and (18), the 

current estimate a  of the residual acceleration a  holds 

                2
1 1ˆa a u PR a a ai i i i T i i i i      a a w a α a a w , (51) 

where aa  is the second entry of the drag-free state estimate      ˆa a a ai i K i x x e  and  

 
0 1

1 1 2

2 2

a a

a a a a a a

a a

L K

L L A K K K

L K

   
         
      

  (52) 
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defines the estimate gain aK  on the basis of the feedback gain aL  in (41). Since the matrix 

aA  in (18) turns out to be singular, (52) has a unique solution if and only if a a aA L C  

preserves three zero eigenvalues, in other words if 1 0 2a a aL L L  . From (51) and (52) one 

finds that 

       2
1 1DF a a ai K L i T α e , (53) 

The hybridization signal DFα  is therefore a wide-band bounded signal, since it is proportional 

to the innovation ae , i.e. to the output of the stabilized error equation (24).  

The set of spectra  , ,q c o     is tuned in a similar manner as the drag-free design. If (50) 

holds, the following equality, which is the analogue of (47), can be proved  

 
              

  2 2

, , , ,

1 ,

q q c q a o q q c q

q q q

z z z z z z z

z T I

   


   

   

q S M d q V e

M V S


, (54) 

where qe  has been defined in (24) and ad  is the accelerometer bias/drift in (16). The design 

error oq  of the FLOF generator has an expression similar to (54).  

Equation (54) and the second inequality in (38) can be converted into  

         max, , , 1 , 2 2,  q q q sq q vq qW f W f W f f f            ,  (55) 

which is similar to (43) and has the following components 

 
              

         

2 2 22 2 21

,  

sq q q da qo q qs
q

vq q q q q

W f f S f S f f S f
S f

W f jf P jf jf P jf

  

    

S M V

V P

. (56) 

In (56) daS  defines the class aD  of the accelerometer drift, qoS  is the spectral bound of the 

FLOF generator error and qsS  is the bound of the attitude sensor noise. The components are 

assumed to be uncorrelated. Assuming   1vqW f  , we can force 1q  , thus eliminating the 

contribution of qP  and simplifying (55) to the first term.  

Minimization of  
max0max , 1,f f q qW f      is more complex than (43), due to the large size 

of eigenvalues which is equal to 5 5 2qn     for each axis. Coordinate decoupling has been 

exploited, by minimizing (55) for each axis. The qn  degrees of freedom have been reduced to 
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five by correlating the elements of the spectrum  j , , ,j x y z , of the generic axis, in the 

following manner 

 

             
           
         

0

0 0

0

1 2 ,  1,  0,  0,1,.., 4

1 2 ,  0< 1,  0,  0,1,.., 4

1 ,  1,  0,1

h j
oh o q

h j
qh q q q

ch c q

j j j j j j h

j j j j j h

j j j j j h





     

    

    





     

     

    

. (57) 

The rules of the first and second rows aim to spread the spectrum below   1

0 02q qf T   

(attitude state predictor) and   1

02o qf T    (FLOF generator) in order to reduce the 

sensitivity and complementary sensitivity overshoot [26], [27]. Overshoot limitation aims not 

to amplify residual disturbance components (those not cancelled), and in turn the state feedback 

magnitude.   and   are referred to as ‘spreading exponents’. The FLOF generator upper 

frequency  of j  turns out to be wider than the attitude predictor and requires   1j  . The 

third rule tends to approach (without reaching) the anti-causal condition of the Embedded 

Model Control [10], [11], [12], which suggests that the state feedback spectrum  c j  is 

closer to zero (deadbeat control) than the state predictor  q j . This aim requires   1j  . 

Design parameters in (57) were firstly obtained from a simplified optimization of (55). Results 

were then adjusted by a pre-defined sequence of simulated runs. Table 2 summarizes 

optimization results. 

 

Table 2. Drag-free and pointing/roll eigenvalues  

No. Control function Complementary 
eigenvalue bound 

Frequency upper 
bound [Hz] 

Spreading 
exponent 

Size 

1 3D FLOF generator  0.1  0.16 1.5 6 
2 2D pointing state 

predictor (pitch, yaw) 
0.005 0.008 1.2 6 

3 Roll state predictor 0.002 0.003 2 6 
4 3D state feedback 0.1 0.16 0 2 
5 3D angular drag-free 0.5 0.8 1.7 3 
6 Time unit [s] 0.1 

Figure 9, left, shows the functional  
max0max , 1, / 2f f q qW f      versus the upper bound 

 0 2,3q j   of the complementary eigenvalues in (57) for pointing control axes. The three 

plotted curves point out that pointing control design does not respect (55), since the functional 

stays always above the unit upper bound. The case with 1   proves that increasing  , in 
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other words, widening the state feedback BW (toward the anti-causal limit) is of benefit. The 

case 1.5   aims to further reduce the overshoot of the sensitivity in Figure 9, right, but at the 

same time narrows the overall control BW without any benefit to the functional value. The case 

  20j   and   1.2j  , 2,3j  , which appears to be insensitive to 0q  from 0.002 to 

about 0.01, was taken as the best solution. The optimal value 0 0.005q   was found 

experimentally within the insensitive range.  

 

Figure 9 .Left: design functional. Right: sensitivity and complementary sensitivity. 

The fact that the design does not conform to (55), implies that also the second inequality (38) is 

not respected, as shown by simulated results in Section 4. Two are the main reasons. 

1) The BW of the FLOF generator must be sufficiently wide in order to estimate the FLOF 

acceleration. The reference noise density in Figure 6, due to GNSI measurements, 

combined with optical metrology noise, makes the overall sensor noise to increase.  

2) Filtering the optical metrology noise by narrowing the state predictor BW, for instance by 

increasing the spreading exponent   in (57), is constrained by the need of rejecting the 

residual acceleration drift. 

As a conclusion, the spectral pointing bound in Table 1, row 7, should be considered a 

worst-case objective. Alternative, relaxed spectral bounds have been issued by science as 

shown in Section 4. 
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Finally, fiber optical gyroscopes seem of scarce help for pointing control. Assume a noise 

spectral density of  1 rad/ s HzS  , which is typical of navigation grade gyroscopes. 

Integration along the MBW (from 1 mHz to 100 mHz) provides the angular spectral density 

,min1.6 160 rad/ Hzq qS S    which is larger than the pointing bound in (38) and in Table 

1, row 7. 

4 Simulated results 

Simulated results were obtained from the end-to-end mission simulator which was jointly 

developed by Thales Alenia Space Italia and Politecnico di Torino. Two different orbits were 

simulated, inline and pendulum. Orbital, mass and environment parameters are in Table 3. 

Thruster assembly parameters are provisional, since layout is still to be frozen. 

 

Table 3. Orbit, mass and environment parameters  

No. Parameter Unit Value Comment 
Inline formation Pendulum 

formation 
1 Semimajor axis  km 335ER    419ER   6378kmER 

 
2 Eccentricity  0.001 0.001  
3 Inclination rad 1.553 (89 deg)  1.553 (89 deg)  
4 Right ascension 

of the ascending 
node 

rad 1.571 (90 deg) 

 
1.5721

0.0013 



  

RAAN 

5 Perigee anomaly rad  0.0149     0.0149    

5 True anomaly rad 0 0 Initial 
6 Pendulum 

aperture 
rad 0  0.0872 5 deg   /   

6 Solar radio flux  22

2

10 W

m Hz



 73 240   73 240  Variable 

7 Geomagnetic 
index  

nT 18 18  

8 Mass  kg 885 885  
9 Inertia matrix  kgm2 230 14 6

14 1700 1

6 1 1600

 
  
  

 
230 14 6

14 1700 1

6 1 1600

 
  
  

 

 

10 Thrust range mN 0.05 2.5   0.05 2.5  Provisional 
11 Thruster angular 

frequency 
rad/s 25  25 2nd order 

response 
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Attitude control assumes a diagonal inertia matrix nomJ  affected by a few percent of 

uncertainty. Thruster and accelerometer dynamics is simplified to be a 0.1 s delay. The noise 

spectral density of the optical metrology is in Figure 8. The results are obtained from short-run 

simulations lasting 52 10  s  (about 2 and half days). Spectral densities are plotted in the 

frequency band 0.01 mHz 100 mHzf  , which overlaps the MBW. Figures refer to the 

leader satellite; the follower having similar profiles. Angular components are denoted with x 

(roll), y (pitch) and z (yaw). 

 

Figure 10 Perturbation torques. Left: inline formation. Right: pendulum formation. 

Figure 10 shows the total environment torque dM  in (12), free of thruster noise and gyro 

torque. Pendulum formation torques, Figure 10, appear to be smaller than inline formation 

torques because of higher altitude. Magnitude modulation is due to the daily variable solar 

activity which modifies the thermosphere density (the residual density at low-Earth-orbits, 

which is highly sensible to solar activity). Assuming one-meter thruster arm, 1 mNm torque 

corresponds to 1 mN thrust, in agreement with Figure 11, where the commanded thrust vector is 

plotted. The plotted command includes translational drag-free and formation command [9]. The 

thrust vector magnitude of the pendulum formation is smaller than the thrust bound of 2.5 mN 

in Table 3, but it is closer to the bound for the inline formation. A low margin of this kind is 

mainly due to translational drag-free controller and not to attitude controller. The low margin, 
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although of primary concern, can be enlarged by optimizing the thruster assembly layout, a 

design task be done in parallel with thruster technology finalization and assessment. The 

margin may be slightly increased by partly actuating commanded torques with magnetic 

torquers, since they are mandatory as backup actuators. The issue of how to manage possible 

thrust saturation is not treated here, but it is strictly related with the long-term solar activity 

prediction. In fact, the magnitude of aerodynamic forces and torques is proportional to the 

thermosphere density, and the NGGM mission life is planned to last about ten years, close to 

the solar activity period.  

 

Figure 11 Commanded thrust vector. Left: inline formation. Right: pendulum formation. 

Figure 12 shows the 3D residual angular acceleration a  of the leader satellite of the inline 

formation. The low-frequency spectrum is free of the accelerometer drift since it is rejected by 

attitude control. Spectral density and time profiles of the pitch acceleration (y axis) show the 

spectral lines (first and second orbit harmonics) of the FLOF angular acceleration oω . Spectral 

lines are chiefly due to orbit eccentricity (first harmonics) and to Earth flatness (second 

harmonics). In the case of the pendulum formation, spectral lines are dominated by the yaw 

motion of the satellite-to-satellite line (z axis in Figure 12), and hence of each satellite around 

the mean formation orbit (see Figure 5). Spectral lines are bounded but, when converting a 

discrete Fourier transform to spectral density they become unbounded and tend to diverge as 

soon as the recording length increases. The spectral densities of the y and z axes in Figure 12 
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show an overshoot around 20 mHz which is absent in the x-axis plot. The overshoot is mainly 

due to the GNSI noise contribution to the FLOF acceleration ˆ oα , which is much more 

pronounced on the pointing axes. It can be proved that the spectral density gS  of the 

differential GNSI noise ( m/ Hz ) generates angular spectral densities ( rad/ Hz ) of this kind 

 
     
     

2 3

1 2 2

2 / 7

/ 0.03

o o g nom g

o o nom nom o

S f S f S d S f

S f S f d r S f

  

 
, (58) 

where 200 kmnomd   is the mean formation distance and 6700 6800 kmnomr    is the mean 

orbit radius depending on the formation type (see Table 3). The double derivative of 2 3o oS S

, plotted in Figure 6, turns out to overlap the optical metrology noise, thus contributing to the 

poor performance of the pointing control as anticipated in Section 3.4. Improvement of the 

differential GNSI accuracy seems desirable (see Table 4). 

 

Figure 12 Residual angular acceleration Left: inline formation. Right: pendulum formation. 

Similar plots to Figure 12 pertain to the residual angular rates (local angular rate vector ω ) as 

in Figure 13. The spectral density of the pitch rate has been cleaned of the mean orbital value 

nom . 
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Figure 13 Local angular rate of the inline formation. Left: spectral density. Right: time profile. 

Figure 14 shows the spectral density of the residual local attitude (pointing errors and residual 

roll). In agreement with the lack of design margin in Figure 9, left, pitch and yaw spectral 

densities do not conform to the MBW bound in Table 1, row 7, equal to 1 rad/ Hz . Actually, 

as shown in Figure 14, relaxed bounds are made available by science. To be conservative, 

pointing design has been developed having in mind the worst-case bound ,minqS  in (2). 

Mechanism and limits of hybridization become clear by comparing roll and pointing 

performance in Figure 14. Since roll bound (see Figure 8) is much larger than the pointing one, 

narrowing the BW of the state predictor below 10 mHz is feasible at the expense of the 

accelerometer drift rejection (the large overshoot of the roll spectral density). In this way 

star-tracker noise can be better filtered than optical metrology, and the roll spectral density 

stays below the bound of Figure 8 with some margin. 
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Figure 14 Left: spectral density of the local attitude of the inline formation. Right: Time profile. 

As a conclusion, main criticalities and the main recovery modes are summarized in Table 4. 

 

Table 4. Main criticalities and main recovery modes 

No Criticality Recovery mode Figure Priority 
1 Thrust magnitude close 

to bound for the inline 
formation.  

Thruster layout 
optimization in parallel to  
thruster technology 
finalization/assessment.  

Figure 11 Primary issue, 
but not due to 
attitude control 

2 Residual acceleration 
low margin above 10 
mHz 

Improvement of 
differential GNSI 
accuracy. 

Figure 12 Secondary issue 

3 Pointing error spectral 
density overshoot with 
respect to worst-case 
target bound in Table 1 

Pointing spectral bound 
relaxation in parallel to 
optical metrology 
finalization/assessment.  

Figure 14 Primary issue 
depending on 
science 
metrology 

 

5 Conclusions 

The formation attitude control of a scientific mission under study has been outlined, and some 

critical issues discussed. Formation attitude reduces to independent pointing control of each 

satellite if optical sensors measuring the satellite misalignment from the satellite-to-satellite 

line, materialized by a laser beam, are available. Pointing control must be frequency 

coordinated with drag-free control, since the latter requires that the angular acceleration is 

ideally zero in a mid-frequency band dictated by scientific measurements. Below this band, 

acceleration must track the formation frame of reference (FLOF). Drag-free control is designed 

such to limit the BW of the pointing control and of the FLOF generator from above. This 

limitation avoids the degradation of the acceleration residuals due the double derivative of the 

noise of attitude sensors and differential GNSI. In addition, a narrow pointing BW prevents 

rejection of the low-frequency components of the residual acceleration which are affected by 

the accelerometer drift. Frequency coordination between angular drag-free and pointing/roll 

control is implemented by exploiting a hierarchical decomposition of control strategy, 

embedded models and noise estimators. In practice, drag-free control builds up a fast and 
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noise-free actuation channel for spacecraft attitude control. To replicate this channel at the level 

of the embedded model, as required by the Embedded Model Control, the wide-band residual 

angular acceleration (hybridization signal), which drives the spacecraft attitude, must be 

carefully estimated and dispatched within the attitude controller. The higher frequency 

components of this signal substitute optical metrology measurements, which despite being 

accurate, may degrade the angular acceleration residuals. Simulated results prove and clarify 

design and criticalities. 

6 Appendix  

The results presented in the appendix are unpublished. 

6.1 Quaternion error equation 

Adopting continuous time, the differential equation of the attitude design error 1ˆ ˆq
 e q q  

can be written as  

 
     

         1

1
ˆˆ ˆ

2
ˆ ˆˆ ˆ

q q

q q

t t t

t t t t t



 

 

   

ω

ω ω ω

e e

e e


, (59) 

where ˆω  is the angular rate error with components in the frame defined by q . ˆω  can be 

rewritten with the help of the vectorial part of q̂e  as  

 
          
     

2
ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ

q qt t t t o t

t t t

 



   

 

ω ω e ω e

ω ω ω
. (60) 

By replacing (60) in (59), by developing the quaternion product in (59) and by neglecting 

second order terms in ˆω  and ˆqe , the vectorial differential equation is obtained  
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ω e
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
. (61) 

The DT version follows from (61) by assuming 1T ω .  

6.2 Dynamic noise estimator 

Consider the embedded model 
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         
   

0ˆ ˆ ˆ ˆ1 ,  0

ˆ ˆ m

i A i B i G i

i C i

    



x x u w x x

y x
,  (62) 

with dim ,  dim ,  ,  dimw w yn G n n n n n    x y . We want to synthesize  iw  through a 

linear feedback driven by the model error ˆm m e y y , y  being the measurement vector. 

Results of [24] and [25] allow establish the following conditions on the existence of static and 

dynamic stabilizing feedback.  

Proposition 3. Static feedback. Given  , ,A G C  and a set  1,..., n    of symmetric 

complex eigenvalues, we want find a real ,  yL n n  such that the zeroes of  

    det A GLC      , (63) 

are exactly the elements of  . Only separate necessary and sufficient conditions exist, namely 

1) A necessary but not sufficient condition is  

 w yn n n   . (64) 

2)  A sufficient condition is  

 w yn n n   . (65) 

Proposition 4. Dynamic feedback. Given  , ,A G C  and a set  1,..., ,...,n n q      of 

symmetric complex eigenvalues, we want find an invertible state equation  , , ,e eA L N L   of 

order q  with real coefficients 

 
       
     

1 ,  0 0e e e e m e

e e m

i A i L i

i N i L i
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 

x x e x

w x e
 , (66) 

such that the zeros of the characteristic polynomial  

   det
e e

A LGC GN
I

L C A
  

  
     

  (67) 

are the elements of  . Only separate necessary and sufficient conditions exist, namely: 

1) A necessary but not sufficient condition is  

  1w y w yq n n n n n      . (68) 
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2)  A sufficient condition is  

 
      

   

1 min 1 , 1

floor / ,  floor /

w y w y y y w y

y y y w w w

q n n n n r n r n n

r q n q n r q n q n

       

   
 , (69) 

where yr  and wr  are the remainders of q  divided times yn  and wn  respectively.□ 

Consider the following single-output example with 3,  1,  2y wn n n   , which corresponds to 

a generic coordinate of (25), but simplified to include a first-order stochastic dynamics: 

  
1 1 0 0 0

0 1 1 ,  1 0 ,  1 0 0

0 0 1 0 1

A G C

   
        
      

 . (70) 

The necessary condition for a static feedback in Proposition 3 is not satisfied since 

2 3w yn n n    . Instead, necessary and sufficient conditions of Proposition 4 turn out to be 

  
2 2 3

2 2 min 0, 2 2 3 1/ 2y w

q

q r r q q

 

       
 , (71) 

and suggest 1q  , in other terms, the following dynamic feedback 

 1 1

2 2

1 ,  

,  

e e eA L l

l n
L N

l n

  

   
    
   

 . (72) 

The closed-loop state predictor which consists of (70) and (72) is written in compact form as  
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x
  (73) 

and the matrices hold 
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 . (74) 
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The six unknown parameters  1 2 1 2, , , , , el l n n l   are used to fix four closed-loop 

eigenvalues  1 4,...,   . Let us replace eigenvalues ,  1,..., 4j j   with their complements 

1j j   , which implies fixing the polynomial coefficients  0 3,...,kc c c C  as follows 

    4 34

01
, j

j jjj
P c    


   C . (75) 

In the following we assume 0 Re 1j  . Equality of  ,P  C  with the characteristic 

polynomial  ,P    of the closed-loop matrix in (74) provides four nonlinear gain equations 

to be solved 

 

3

1 2

1 2

2 0 2

1 1 1 2 3

0

e

e

c

l c

l n c l

l n c l

c c l c c c c






 


 
 

    

. (76) 

Since el  is a common factor, it is fixed to unit. Thus, the set of the solutions of (76) in   is a 

linear variety  2 , 1el l  V , parameterized by 2l . The choice of 2l  does not modify the 

state-predictor input-output properties as the following proposition states.  

Proposition 5.   The sensitivity    ˆ /m mS z y y y   and the complementary sensitivity 

ˆ1 /m m mV S y y    of the state predictor (73) are invariant in the linear variety  2 , 1el l V  

defined by (76) and by 1el  . 

Proof. The proof follows by observing that  mV z  and mS  only depend on the coefficients of 

C  in (75), as follows 

    
   

2

0
34

0

1

1 1
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jk
m j

jj

c z
V z

z c z







  



 □ (77) 

Therefore the choice of 2l  is just dictated by a simplification aim, and can be restricted to the 

convex set K V defined by  

    2 0min 0, / max 0, /c l c c    , (78) 

since it includes the following simple solutions 
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2 1 2 0

2 1 2 0

2 0 1 0 2

0,  ,  
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l n c n c

l c n n c c

l c n c c n


 

  
   
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 . (79) 

6.3 Comparison with steady-state Kalman filter  

It is of interest finding an equivalent Kalman filter of the state predictor (73). As a first step, the 

gain vector in (72) which has two columns, must be reduced to a single column, but preserving 

the same sensitivity 1m mS V   and the same complement mV  as in (77). The following 

proposition provides the solution. 

Proposition 6. There exists a state transformation converting the matrix triple  , ,m m mA L C  

in (74) to the following triple  

 
1 1

1 1
2

2 2
1

1
1

1 1 0 1
0

/ 1 1 0
/

,  ,  
0 1 0

/
/ 0 0 1

K K K m

l m
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l l
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n
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
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

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 
                
       

. (80) 

The triple  , ,K K KA L C  in (80) takes a structure similar to Kalman filter upon setting 2 0n  , 

which is admitted by (79). 

Proof. The triple  , ,K K KA L C  follows from the state transformation 

 
1

1

1 0 0 0

0 1 0 /ˆ ˆ

0 0 1 0

0 0 0 /

K

eK e

n

x x

n




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 

              

x x
  (81) 

and by fixing 2 0n  .□ 

Actually, the triple  , ,K K KA L C  is not a Kalman filter pair since the first entry of KL  is zero, 

and is replaced by the parameter   in KA  so as to recover internal stability. This is formally 

proved below. To this end, we search for appropriate covariance matrices 0P   and 0Q  , 

sized ,  4n n n  , that, given any gain vector KL  in (80) and any 2 0r  , satisfy the 

discrete-time Kalman filter equations 
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
 

    
  (82) 

As matter of fact, given the matrix triple (80), no P  and Q  exist satisfying (82), meaning that 

the state predictor (73) belongs to a class of dynamic systems which cannot be reduced to a 

Kalman filter.  

Theorem 3. Given any triple  , ,K K KA L C  in (80), equation (82) does not admit any solution 

for P  and Q .  

Proof. Using the Kronecker product  , equation (82) can be rewritten as a linear equation  

 
  

   
 
 2 2

2
0 vech

0 vech

K K K KK
K K

n K K K Kn

C A L C DL P
r F

QI A A L C D D

     
     
        

y p , (83) 

where  vech P  and  vech Q  are the  1 / 2m n n   vectors of the upper diagonal part of 

the symmetric matrices P  and Q , D  is a suitable 2n m  matrix (called duplication matrix) 

such that    vec vechP D P , where  vec P  is the 2n -sized vector of the columns of P , 

20
n

 is zero vector of size 2n  and 2n
I  is an identity matrix of size 2n . The LHS vector Ky  in 

(83) is sized  1n n   like the unknown vector p  in the RHS. Thus, the equation matrix KF  

is square as expected. Using symbolic algebra, one can prove that Ky  does not belong to the 

range of KF , i.e.  

  K KFy R , (84) 

and the Theorem is proved. □ 

The result (84) appears to be rather strong, as it does not involve the positive 

(semi-)definiteness of P  and Q . The result holds also for non-definite matrices.  

To conclude, Kalman filter exists for the triple  , ,A G C , but it adds a parasitic noise 

component to the first equation in (74), which is contrary to the first line of G  as it is equal to 

zero. The parasitic noise is such to reduce the relative degree of the complementary sensitivity 

mV  to one (instead of two for the dynamic feedback), which is detrimental to noise and 

neglected dynamics rejection.  
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