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Abstract 22 

Persistence is a state of bacterial dormancy where cells with low metabolic 23 

activity and growth rates are phenotypically tolerant to antibiotics and other cytotoxic 24 

substances. Given its obvious advantage to bacteria, several researchers have been 25 

looking for the genetic mechanism behind persistence. However, other authors argue 26 

that there is no such mechanism and that persistence results from inadvertent cell 27 

errors. In this case, the persistent population should decay according to a power-law 28 

with a particular exponent of -2. Studying persisters' decay is, therefore, a valuable 29 

way to understand persistence. Here we simulated the fate of susceptible cells in 30 

laboratory experiments in the context of indirect resistance. Eventually, under indirect 31 

resistance, detoxifying drug-resistant cells save the persister cells that leave the 32 

dormant state and resume growth. The simulations presented here show that, by 33 

assuming a power-law decline, the exponent is close to -2, which is the expected value 34 

if persistence results from unintentional errors. Whether persisters are cells in a 35 

moribund state or, on the contrary, result from a genetic program, should impact the 36 

research of anti-persistent drugs.   37 

 38 

  39 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427471doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427471
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

 

Author Summary 40 

Persistence, a form of bacterial dormancy, was discovered in the early days of 41 

the antibiotic era. Thanks to dormancy, these cells often evade antibiotic therapy and 42 

the immune system. However, despite its clinical importance, this phenotype's nature 43 

is still under debate. Arguably, the prevailing view is that persistence is an evolved 44 

(selected for) bet-hedging mechanism to survive in the presence of cytotoxic agents 45 

such as antibiotics. In that case, the persister population should decay exponentially, 46 

although at a much slower pace than the non-persister population. A few authors 47 

recently advanced an alternative hypothesis: bacterial persistence results from many 48 

malfunctions and cell division errors. In this case, persistent populations should decay 49 

according to a power-law with exponent of -2, that is, according to 1/t
2
. Here we 50 

simulated the fate of susceptible bacterial cells in the presence of bactericidal 51 

antibiotics in the context of indirect resistance based on laboratory experiments 52 

performed earlier. By showing that the dynamics of persister cells is consistent with 53 

1/t
2
, our results corroborate the hypothesis that the phenomenon of bacterial 54 

persistence is an accidental consequence of inadvertent cell problems and errors. If 55 

confirmed, this conclusion should impact the research strategies of anti-persistent 56 

drugs. 57 

 58 

 59 

 60 
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 70 

 71 

"The following day, no one died. This fact, being absolutely contrary to life's 72 

rules, provoked enormous and, in the circumstances, perfectly justifiable anxiety in 73 

people's minds, for we have only to consider that in the entire forty volumes of 74 

universal history there is no mention, not even one exemplary case, of such a 75 

phenomenon ever having occurred…" 76 

 77 

Death with interruptions 78 

José Saramago  (2005) 79 

Nobel Prize for Literature 1998 80 
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Introduction 82 

Susceptible bacterial populations do not perish instantaneously in the presence 83 

of bactericidal antibiotics. Instead, they decay exponentially, typically for a few hours 84 

for wild-type bacterial strains. After this first period, a second population has a 85 

significantly lower death rate [1,2]. These cells are in the persistent state and usually 86 

account for less than 1% of the original bacterial community. The persistent cells do 87 

not harbor resistance genes, but they thrive in the presence of a drug or other harsh 88 

environments by lowering their metabolic activity and growth rate. Importantly, 89 

because of their ability to resume growth following antibiotic therapy, they are 90 

responsible for recurrent and chronic infections [2–4]. The ubiquitous distribution of 91 

persistence among bacteria, fungi, and cancer cells [2,5,6], together with its impact on 92 

antibiotic resistance development among bacteria [7,8], highlights the need for a 93 

better understanding of the role of bacterial persistence in the survival of pathogenic 94 

bacteria. 95 

Persistence is often involved in indirect resistance [9]. During indirect 96 

resistance, susceptible cells are protected against a bactericidal antibiotic because 97 

other co-inhabiting bacterial cells detoxify the medium through antibiotic degradation 98 

or modification [10,11]. Once the environment becomes nontoxic, cells that leave the 99 

persistent state survive and thrive [9]. Indirect pathogenicity is an alternative name for 100 

indirect resistance because, in many cases, it involves antibiotic-susceptible pathogenic 101 

bacteria and cells from a non-pathogenic bacterial species that detoxify the 102 

environment enabling the growth of the pathogens (see, for example, refs. [10,12,13]. 103 
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In the context of indirect resistance, the chances of survival of susceptible cells 104 

depend on several factors, not just entering into the dormant state of persistence. For 105 

example, medium detoxification certainly takes some time to be completed. 106 

Moreover, the survival of susceptible cells depends on detoxifying cells' density and 107 

the total cell density. High population density implies that susceptible and resistant 108 

cells tend to be close neighbors, increasing the odds of susceptible cells [14–16]. 109 

Furthermore, the survival of susceptible cells should depend on the death rate of non-110 

persister cells in the presence of antibiotics and, importantly, on the persistent cells' 111 

behavior and death rate.  112 

While the bactericidal antibiotic is still present, any bacterium returning to 113 

growth dies. As mentioned above, in the presence of a bactericidal antibiotic, the non-114 

persistent population of wild-type strains declines exponentially (that is, according to 115 

exp(-k.t), where t is time, and k is a constant). The exponential decay is a direct 116 

consequence of the fact that bacterial clonal populations are homogeneous and 117 

involve many independent entities (cells), each having the same constant probability 118 

per unit of time of starting growth. After some time of decaying exponentially and fast, 119 

a second phase begins. In this phase, only persister cells are alive. This population also 120 

decays, although at a lower rate [1],  because persister cells die if they return to 121 

growth while the medium is still toxic.  122 

Until recently, the assumption was that the persistent population also decays 123 

exponentially,  but at a much slower pace. However, some studies have suggested that 124 

the persistence state results from different kinds of faults and errors in cell division 125 

rather than an evolved genetic program [17–20]. If true, the persistent population is 126 

physiologically heterogeneous, comprising several sub-populations, each with its 127 
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proper exponential decay. The sum of all these negative exponentials results in a 128 

power-law curve (i.e., proportional to t
α
, where t is time and α is the exponent), 129 

instead of exponential decay [21]. Importantly, this reasoning also tells us that the 130 

exponent of the power-law decay should be close to -2, which was experimentally 131 

corroborated [21]. In other words, the population of persister cells should decay 132 

proportionally to t
-2

, where t is time. However, there is no way to calculate the rate of 133 

exponential decay (that is, there is no way to compute the value of the constant k in 134 

exp(-k.t)). 135 

Fig 1 shows what happens to a clonal drug-sensitive bacterial population 136 

exposed to a cytotoxic drug, as well as the importance of a power-law decay.  In both 137 

Figs 1a and 1b, the first decaying phase consists of exponential decay but, after some 138 

time (instant t = τo), the decline is much slower. However, even if the exponential 139 

decay is prolonged, it crosses the power-law decay sooner or later (Fig 1b). This fact's 140 

biological meaning is that a power-law decline may allow the persistent population's 141 

survival for much longer. The long tail of power-law distributions is relevant for 142 

indirect resistance because resistant (detoxifying) cells may take a long time to 143 

detoxify the medium. 144 

 145 

Fig 1. Decay of a drug-susceptible bacterial population in the presence of a 146 

bactericidal antibiotic. The horizontal axis, representing time t (hours), is linear, while 147 

the vertical axis is on a logarithmic scale and represents the proportion of the 148 

population that is still alive. Descending full lines represent the exponential decay of 149 

the non-persistent population, according to exp(-0.04 t). When t = τ0, only persisters 150 

are alive. The broken lines represent decay according to the power-law 1/t
2
. The 151 
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dotted lines represent exponential decay, i.e., according to exp(-k t). A: persisters 152 

decay according to constant k = 0.005 h
-1

. B: persisters decay according to constant k = 153 

0.0025 h
-1

. 154 

 155 

 156 

This paper's general goal is to investigate the behavior of persistent 157 

populations. To achieve this goal, we studied the behavior of genetically susceptible 158 

cells in the context of indirect resistance. Therefore, we had two main objectives. First, 159 

we aimed to understand whether persistence is necessary for the survival of sensitive 160 

cells in the context of indirect resistance (Fig 2). Second, we aimed at understanding 161 

whether the decay of the persistent population is better explained by a negative 162 

exponential or by power-law with a negative exponent. To achieve these two main 163 

objectives, we took advantage of previous experiments performed in our laboratory, 164 

where we measured the degree of protection of susceptible cells when co-cultured 165 

together with β-lactamase-producing cells and in the presence of the β-lactam 166 

antibiotic ampicillin [14]. In the present paper, we performed computer simulations to 167 

understand how many non-persister and persister cells contributed to the survival of 168 

susceptible cells, identified which parameters explain such contributions, and directly 169 

compared results with those obtained experimentally by [14]. In the end, we hoped to 170 

understand persistent cell formation mechanisms, which is critical for developing 171 

medical strategies against pathogenic bacterial persisters. 172 

 173 

Fig 2. Indirect resistance and the survival of susceptible cells through 174 

persistence. When exposed to antibiotics, persister cells survive and eventually grow 175 
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after medium detoxification by resistant cells. Blue circles represent susceptible cells, 176 

and orange circles represent resistant cells. 177 

 178 
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2. Methods 180 

Previous experimental data used in this study 181 

In the context of indirect resistance, we intend to understand how susceptible 182 

bacteria survive while the medium is still toxic. For that, we compared experimental 183 

results from our previous experiments [14] with simulations performed in the present 184 

work. In those experiments, we used bacterial cells of Escherichia coli to measure the 185 

degree of protection of susceptible cells in the presence of ampicillin when co-cultured 186 

with cells encoding a β-lactamase (resistant cells). The basic experimental setup was to 187 

initiate the co-culture with a specific total initial density and frequency of 188 

resistant:sensitive cells in plates with rich medium supplemented with ampicillin. After 189 

incubating for 24h, we quantified the density of both susceptible and resistant cells. 190 

These cells were resistant to ampicillin because they harbored the natural isolated R1 191 

plasmid, which encodes a β-lactamase that detoxifies the medium by breaking the β-192 

lactam ring through hydrolyzation. This plasmid is conjugative, so we also quantified 193 

transconjugants (here defined as cells that received the plasmid plus their 194 

descendants). However, the frequency of transconjugants remained very low [14], 195 

which is a consequence of the fact that the conjugation rate of the R1 plasmid in the E. 196 

coli strain used in the experiments is low [22–24]. 197 

To develop our study, we used the experimental data for (i) two initial total cell 198 

densities – approximately 10
7
 cfu/mL and 10

5
 cfu/mL, henceforth denominated as high 199 

and low density respectively; and (ii) three proportions between resistant (R) and 200 

susceptible (S) cells – 1R:99S, 50R:50S and 99R:1S (where, e.g., 1R:99S means a 201 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427471doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427471
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

 

frequency of a resistant cell for 99 susceptible cells). The relevant information about 202 

the initial experimental conditions and final results from the Domingues et al. study 203 

(ref.[14]) are in Table 1, where we can see the average of three replicates.  204 

Table 1 – Experimental data (average values) from ref. [14] 

Density Frequency 
Initial 

resistant 

Final 

resistant 

Initial 

susceptibl

e 

Final 

susceptible 

Transcon

jugants 

Low 

1R:99S 2.12x10
3 

8.87x10
9 

2.16x10
5
 2.03x10

2
 0 

50R:50S 1.22x10
4
 3.90x10

10
 1.04x10

4
 1.70x10

1
 0 

99R:1S 1.87x10
5
 1.40x10

10
 2.03x10

3
 1.70x10

1
 0 

High 

1R:99S 7.00x10
4
 2.04x10

10
 2.93x10

6
 3.27x10

4
 1.03x10

2
 

50R:50S 5.00x10
5 

7.70x10
9
 4.95x10

5
 1.08x10

6
 1.60x10

4
 

99R:1S 5.40x10
7
 6.53x10

9 
8.73x10

5
 1.23x10

7 
1.39x10

5 

 205 

Computational Model - flow of the simulation 206 

Here we describe the algorithm of the simulation process. Table 2 and Fig 3 207 

show the respective pseudocode and flowchart. All code is available on GitHub 208 

(https://github.com/jrebelo27/Simulation-code-of-persistence). 209 

Fig 3. Flowchart of the program. After distributing cells in the 'plate', the 210 

program simulates bacterial growth during as many generations as the ones 211 

completed in experiments of ref. [14]. The decay of the bacteria varies depending on 212 

the time interval in which the simulation is. Dotted lines only happen when the 213 

biological assumption is that persister cells leave the dormant state as soon as their 214 

site is nontoxic. 215 
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Table 2 - Pseudocode of the program* 

Process Pseudo Code 

Distribution of cells 

randomly in the 

'plate' 

Assign random coordinates x and y (integers) to all cells in 

the circular arena with a radius of 90000 positions; for each 

susceptible cell, do (calculate the distances to the nearest resistant 

cell; save values in a file). 

Decay of 

susceptible cells in 

the cycles before t 

= τ0 

For each cycle between t = 0 and t = τ0, do (obtain the 

proportion of bacteria that start dividing (function A1.exp(-��.t)); 

retrieve as many distances as the number of bacteria that resume 

growth from the list of distances between all susceptible to the 

closest producer; obtain the number of susceptible cells that are at a 

shorter distance than the radius of the detoxified area; save this 

number as surviving non-persistent bacteria). 

Decay of 

susceptible cells in 

the cycle 

containing t = τ0 

For the cycle that includes τ0, do (obtain the proportion of 

bacteria that start dividing (function A1.exp(-��.t)+A2.t� or A1.exp(-

��.t)+ A2.exp(-��.t)); retrieve as many distances as the number of 

bacteria that resume growth from the list of distances between all 

susceptible to the closest producer; obtain the number of 

susceptible cells that are at a shorter distance than the radius of the 

detoxified area; calculate the proportion of non-persistent and 

persistent bacteria (function A1.exp(-��.t)+A2 .t� or A1.exp(-

��.t)+A2.exp(-��.t)); save the number of surviving non-persistent 

bacteria; save the number of surviving persistent bacteria). 

Decay of 

susceptible cells in 

the cycles after t = 

τ0, when bacteria 

leave the dormant 

state when the 

medium is 

detoxified 

For each cycle after t = τ0, do (obtain the proportion of 

bacteria that start dividing (function A2.t�
 
or A2.exp(-��.t))); retrieve 

as many distances as the number of bacteria that resume growth 

from the list of distances between all susceptible to the closest 

producer; obtain the number of susceptible cells that are at a 

shorter distance than the radius of the detoxified area; all persistent 

cells in a detoxified area resume growth; save the sum of these 

numbers as surviving persistent bacteria). 

Decay of 

susceptible cells in 

the cycles after t = 

τ0 when bacteria 

do not leave the 

dormant state 

when the medium 

is detoxified 

For each cycle between after t = τ0, do (obtain the proportion 

of bacteria that start dividing ((function A2.t�
 

or A2.exp(-��.t))); 

retrieve as many distances as the number of bacteria that resume 

growth from the list of distances between all susceptible to the 

closest producer; obtain the number of susceptible cells that are at a 

shorter distance than the radius of the detoxified area; save this 

number as survival persistent bacteria). 

*The program code was implemented in R programming language 216 
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 217 

We simulated the spread of resistant and sensitive cells with a given total 218 

density and at specific proportions (1R:99S, 50R:50S, or 99R:1S) in a medium plate, and 219 

we saved in a file the distances between each susceptible cell and the nearest resistant 220 

cell.  221 

As in the experiments by Domingues et al. (ref. [14]), we assumed that the 222 

plate contains nutrients and the antibiotic ampicillin. Susceptible cells are, by 223 

definition, sensitive to this antibiotic, and resistant cells can detoxify their 224 

surroundings, clearing up the cytotoxic antibiotic. A decreasing ampicillin 225 

concentration gradient is generated from the inside out by the diffusion of the β-226 

lactamase enzyme that degraded the antibiotic.  227 

The simulation is composed of several cycles, as much as the number of 228 

generations completed by the resistant cells in the experiments by Domingues et al. 229 

(ref. [14]). The following happens in each cycle: there is detoxification of a specific 230 

circular area around every resistant cell, simulating the spread of β-lactamase. Such 231 

spread occurs for a certain time, the equivalent of a bacterial generation.  Meanwhile, 232 

resistant cells replicate once. 233 

Regarding sensitive bacteria, non-persistent and persistent behave differently: 234 

(i) Non-persister cells: the computer program randomly takes a percentage of 235 

susceptible bacteria, defined according to the exponential decrease (Fig 1), and tests 236 

whether its site is already nontoxic (that is, if the distance to the nearest resistant cell 237 

is less than the total detoxified radius around the resistant cell). If yes, the susceptible 238 

bacterium survives. If not, that susceptible cell dies; in practice, the program removes 239 

that cell from the simulation's next steps. 240 
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(ii) For persister cells, the computer program may follow two different 241 

approaches, depending on the biological assumptions. Either (a) persister cells leave 242 

the dormant state stochastically only according to the function considered 243 

(exponential-law or power-law), or (b) persister cells resume growth (leaving the 244 

dormant state) stochastically according to an exponential or power-law distribution or 245 

whenever their site becomes detoxified. If the biological assumption is that persister 246 

cells leave the dormant state only stochastically (independently of the antibiotic's 247 

presence/absence), the computer program follows the approach (a). In this case, a 248 

percentage of susceptible bacteria is randomly taken (according to the power-law or 249 

the exponential-law) (Fig 1). The program tests whether each susceptible cell's site is 250 

already nontoxic (that is, if the distance of each susceptible (persister) cell to the 251 

nearest resistant cell is less than the total detoxified radius around the resistant cell). If 252 

yes, the susceptible cell survives. If not, that susceptible cell dies, which means that 253 

the program removes this cell in the simulation's next steps. If the biological 254 

assumption is that persister cells leave the dormant state as soon as their site becomes 255 

nontoxic, the computer program follows the approach (b). First, we calculate the 256 

difference between the number of susceptible bacteria in the dormant state in the 257 

simulations and the one predicted by either the power-law function or the exponential 258 

function. If that difference is positive, we randomly chose that number of susceptible 259 

cells to leave the dormant state. The program tests if the nearest resistant cell's 260 

distance is less than the total detoxified radius around it. If yes, that cell survives. 261 

Otherwise, the program removes this cell from the simulation (the cell dies because 262 

the antibiotic is still present). Then we look for all persister cells present in the 263 

detoxified area; these cells leave the dormant state, resuming growth. However, if the 264 
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difference is negative, i.e., if the number of susceptible bacteria in the dormant state 265 

in the simulations is lower than the one predicted by the power-law function or the 266 

exponential function, we look for all persister cells present in the detoxified area. 267 

These cells leave the dormant state, resuming growth. 268 

The population of genetically susceptible cells that resume growth while t <= τ0 269 

are, by definition, in the non-persister state, while those susceptible cells that resume 270 

growth when t > τ0 are persister cells. Each cycle represents a generation time. Here 271 

we assume that one generation time is 30 minutes. Time does not flow continuously in 272 

the simulations, but rather in intervals of 30 to 30 minutes. Given the division of time 273 

into these intervals of 30 minutes, the interval containing τ0 has both persister and 274 

non-persister bacteria. Using the decay curve of the population of susceptible bacteria, 275 

we calculate the percentage of persister and non-persister bacteria in this period. For 276 

example, if τ0 = 70 mins, the simulation performs 60 mins (two cycles, each 277 

representing 30 mins) plus 10 mins decaying as non-persisters, and the remaining 20 278 

mins decaying as persisters. Therefore, 1/3 (=10/30) of the remaining genetically 279 

susceptible cells resume growth as non-persisters (i.e., according to the exponential) 280 

and 2/3 (=20/30) resume growth as persisters. 281 

At the end of a simulation, we have gathered information on how many 282 

persister and non-persister cells generated the population of susceptible cells 283 

observed after 24h. Moreover, we can also know how many persister and non-284 

persister cells have survived in each generation. 285 

By performing simulations with several combinations of parameters, we can 286 

find those that better explain experimental results. 287 
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Details of the computational model 288 

Simulating the medium plate and bacterial cells in the plate 289 

The main procedure was to simulate the experiments performed in Domingues 290 

et al. (ref. [14]), where susceptible and resistant bacteria were mixed and cultured in 291 

agar plates. Escherichia coli cells are rod-shaped cells about 2 XX long and 0.5 XX 292 

diameter, hence occupying a 2-dimensional area of about 1 XX
2
 and a plate has a 293 

diameter of 9 cm = 90000 XX. Therefore, we considered that each point in the agar 294 

plate, computationally defined by two integers (coordinates x and y), is the center of a 295 

square with an area of 1 XX
2
. The computer program's first step was to simulate the 296 

random distribution of cells in the plate, assigning random coordinates to all cells. 297 

Then, we calculated the distances between each susceptible cell and the nearest 298 

resistant cell, saving the values in a file. 299 

Calculating the number of generations  300 

In each experimental setup, it is possible to calculate how many generations 301 

were completed by the resistant population (resistant cells are not affected by the 302 

antibiotic). The appropriate mathematical expression is: 303 

Number of generations = Log2[Final number of resistant cells/Initial number of 304 

resistant cells].  305 

In the simulations, both susceptible and resistant cells belong to the same 306 

species and consume the same nutrients. We further assumed that there was no 307 

resistance cost, i.e., in the absence of antibiotics, resistant and susceptible cells 308 

replicate at the same speed. Therefore, if there were no antibiotics and given that both 309 

strains are of the same species, they would complete the same number of generations.  310 
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Simulating the radial spread of β-lactamase around resistant cells 311 

We simulated the spread of β-lactamase as an expanding circle centered in 312 

each resistant bacterium. At any time, these circles represent an antibiotic-free area. 313 

According to the Einstein equation for the Brownian motion, the mean displacement of 314 

a small particle diffusing in a medium is proportional to the root square of the time 315 

elapsed. Therefore, the circle radius grows proportionally to the square root of time, 316 

Sqrt(time). Counting the time in bacterial generations, we may express this as R = 317 

C.Sqrt(number of generations), where R is the circle's radius, and C is a constant that 318 

depends on the diffusion constant, which may depend on the medium conditions (e.g., 319 

the agar concentration). Henceforth, we name this constant C as the "spreading 320 

parameter". Note that in the initial moment (generation 0), the value of R is 0. 321 

Therefore, all susceptible bacteria that start dividing at that moment dies. 322 

Non-persister versus persister cells and the main parameters 323 

Populations of cells that do not encode for antibiotic resistance die in the 324 

presence of bactericidal antibiotics in two phases (Fig 1). In the first phase, between t = 325 

0 and t = τ0, the population declines exponentially, i.e., following A1·exp(−k1·t), where 326 

the constants A1 and k1 are positive. The second phase starts at time t = τ0, where the 327 

population declines at a slower pace, following a power law or an exponential 328 

function, i.e., according to A2 .t
�
, where X is a negative exponent, and A2 is a positive 329 

constant or according to A2·exp(−k2·t), where A2 and k2 are two positive constants and 330 

k2 < k1. All bacteria from this second phase are persister cells. At t = τ0, the two 331 

mathematical expressions should give the same value, i.e., A1·exp(−k1·τ0) = A2 . τ0
�
 or 332 

A1·exp(−k1·τ0) = A2·exp(−k2·τ0) because the lag time probability distribution is 333 
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continuous [21]. Moreover, its cumulative probability is equal to 1. Mathematically, 334 

this means that the integral of A1·exp(−k·τ0) between t and τ0 plus the integral of A2 .τ0
�
 335 

or A2·exp(−k2·τ0) between τ0 and infinity, is equal to 1 [21]. With these two conditions, 336 

we can write A1 and A2 as functions of k1, τ0 and � (assuming that persisters decay 337 

according to a power-law) or k2 (assuming exponential decay): 338 

For power-law decay: 339 

A1 = k1.exp(k1.τ0)/R and A2 = k1/(R.τ0
�
) 340 

where R = exp(k1. τ0) - τ0. k1 /(1+X)-1 341 

For exponential decay: 342 

A1 = 1/Q and A2 = exp(-(k1– k2).τ0)/Q 343 

where Q = (1 - exp(-k1.τ0))/ k1 + exp(-k1.τ0)/ k2 344 

By comparing simulations (this work) with experimental results (obtained in 345 

ref. [14]), we can estimate k1, τ0, and � or k2.  346 

Comparison of results between experiments and simulations 347 

The parameters to adjust were k1, τ0, X or k2, and C. As explained above, the 348 

parameters A1 and A2 depend on k1, τ0, and X or k2. The program ran as many 349 

generations as those completed by resistant cells in the experiments performed in 350 

Domingues et al. [14]. Therefore, the final number of resistant cells should the same 351 

both in experiments and simulations.  352 

We ran several simulations by varying the parameters k1, τ0, X or k2, and C, to 353 

find the set of parameters that better explain the experimental results found in ref. 354 

[14] (Table 1). In these comparisons between experiments and computer simulations, 355 

we considered that experiments had an associated experimental error. For instance, 356 
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agar thickness and other physical conditions of the agar plates that may influence the 357 

spreading parameter may constitute a variance source. Furthermore, experiences are 358 

also subject to unknown errors. For these reasons, we accept our results to deviate 359 

from experimental results. We calculated the lower and upper limits of the intervals 360 

according to the following: 361 

Lower limit = Final number of susceptible bacteria obtained experimentally / 362 

Margin of error 363 

Upper limit = Final number of susceptible bacteria obtained experimentally * 364 

Margin of error 365 

The margins of error tested were 2 and 4. 366 

As explained above, we studied two initial cell densities and three initial 367 

frequencies of susceptible to resistant cells. In the simulations, we combined all 368 

experimental cases with our parameters. For each combination, we performed three 369 

repetitions. In case one repetition result is contained in an interval, we consider that 370 

the simulated parameters explain the set experimental results for that margin of error. 371 

 372 

  373 
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Results 374 

In this work, we took advantage of the experimental results previously 375 

obtained in our research group (ref. [14]). The authors spread resistant cells 376 

(producers of the detoxifying enzyme β-lactamase) and susceptible cells in a nutrient-377 

rich medium plate with ampicillin (a β-lactam antibiotic), followed by the 378 

quantification of susceptible (and resistant) cells after one day. This was done in one of 379 

the three frequencies (for a specific initial total density), namely, 99% of susceptible 380 

cells and 1% of resistance cells (denominated as 1R:99S), the reverse (99R:1S), and also 381 

50% of each (50R:50S). Resistant cells can produce β-lactamase because they harbor 382 

the R1 plasmid encoding the enzyme. This naturally isolated plasmid is transferable by 383 

conjugation, so later, we check the impact of conjugation on the survival of susceptible 384 

cells. 385 

The encounter probability of resistant and 386 

susceptible cells does not explain the survival of 387 

susceptible cells 388 

We started by addressing the hypothesis that surviving susceptible cells are 389 

those that were very close to β-lactamase-producing cells, so we analyzed the 390 

importance of the encounter probability between resistant and sensitive cells when 391 

spread in the agar plate. According to this hypothesis, the probability of encounter 392 

between resistant cells and susceptible cells would be the main factor for the survival 393 

of susceptible cells. If this was the case, the number of surviving susceptible cells (and 394 

their descendants after 24h) should be the same for the 99R:1S and 1R:99S 395 

frequencies. The encounter probability of a resistant and a susceptible cell is 396 
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proportional to 99/100x1/100 (for the case 99R:1S) = 1/100x99/100 (for the case 397 

1R:99S). If the number of surviving susceptible cells was the same, the number of 398 

surviving susceptible cells would be similar. However, they differed considerably (Table 399 

1). In the high-density case, the final number of susceptible cells for the frequency 400 

1R:99S was 3.27x10
4
, whereas for 99R:1S was 1.23x10

7
, hence differing by more than 401 

three-hundred-fold (Table 1). 402 

The encounter probability for the 50R:50S frequency is proportional to 403 

50/100x50/100. This probability is approximately 25-fold higher than the encounter 404 

probability for the 99R:1S and 1R:99S frequencies. Therefore, the above hypothesis 405 

predicts that the number of surviving cells in the 50R:50S frequency should be 25 fold 406 

higher than in the 99R:1S and 1R:99S frequencies. This prediction is also far from 407 

experimental observations (Table 1). For example, for the high-density case, the final 408 

number of susceptible cells for the 50R:50S frequency was 1.08x10
6
, which is about 10-409 

fold less, not 25-fold higher than the 1.23x10
7
 cells observed for the 99R:1S frequency 410 

(Table 1). 411 

These results suggest that the encounter probability is not an essential factor 412 

for the survival of susceptible cells in the indirect resistance phenomenon.  413 

Persistence is required for susceptible cells survival 414 

After the inoculation of susceptible and resistant cells, the latter replicate for 415 

several generations until resources present in the plate are over. The number of 416 

generations completed by the resistant cells can be calculated (see the Methods 417 

section). Assuming that the resistance cost is negligible and that all susceptible cells 418 

start replicating at the same time as resistant cells, we can also estimate how many 419 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427471doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427471
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 

 

susceptible cells should have survived when inoculated to explain their final number. 420 

Table 3 shows these estimations for the six conditions. 421 

 422 

Table 3 – Estimation of the number of surviving susceptible cells at 

inoculation time. 

Density Frequency 
Estimated number of surviving 

susceptible cells at inoculation time 

Low 

1R:99S 4.85x10
-5

 

50R:50S 5.33x10
-6

 

99R:1S 2.27x10
-4

 

High 

1R:99S 1.12x10
-1

 

50R:50S 7.00x10
1
 

99R:1S 1.02x10
5
 

 423 

In two cases shown in Table 3 (high density, frequencies 50R:50S and 99R:1S), 424 

the estimated number of surviving susceptible cells is higher than one cell, but it was 425 

lower than one cell in the other four cases (high density, frequency 1R:99S, and the 426 

three frequencies when density was low). These four cases of less than one cell seem 427 

unrealistic and need to be understood. A possible explanation is that one or more 428 

bacteria have entered the persistence state. In this state, susceptible bacteria can 429 

survive in the presence of ampicillin because they are not replicating, and resistant 430 

bacteria continue to produce and release β-lactamase into the culturing medium.  431 

The time that each bacterium remains in the persistence state varies from one 432 

bacterium to another. When should persistent cells leave the dormant state? We have 433 

analyzed four possibilities. The subpopulation of persister cells resumes growth, either 434 

according to a power-law or to an exponential-law distribution. For these two cases, 435 

dormant cells may or may not resume growth as soon as the medium is nontoxic. 436 

It is impossible to determine the number of persister cells needed to give rise 437 

to the final number of susceptible cells observed experimentally. Suppose we observed 438 
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exactly four surviving susceptible cells at the end of an experiment. We wouldn't know 439 

whether: (i) the four bacteria were in a dormant state all the time; (ii) two cells were in 440 

the persistence state most of the time but resumed growth (replicating once) about 30 441 

minutes before the end of the experiment; or (iii) one cell was dormant most of the 442 

time but resumed growth about 60 minutes before the end of the experiment. Any of 443 

these three scenarios would explain four susceptible cells at the end of the 444 

experiment. Increasing the number of final susceptible cells would sharply increase the 445 

number of possible scenarios. Therefore, we performed simulations, varying several 446 

parameters (more details in the next section), to estimate the number of persister and 447 

non-persister cells necessary to explain the experimental number of surviving 448 

susceptible cells. 449 

Simulations to estimate the growth of susceptible 450 

cells  451 

We had to consider the spreading of β-lactamase produced by the resistant 452 

bacteria and the decline in the susceptible population while exposed to the β-lactam 453 

antibiotic. We have seen that this decaying period has two main phases (Fig 1). The 454 

non-persistent population decays exponentially until t = τ0. At t = τ0, only persistent 455 

cells survived. They resume growth and die if the antibiotic is still present. In that case, 456 

we tested two alternative possibilities for the decay of the persistent population: 457 

according to a power-law distribution or according to another exponential distribution. 458 

We used different parameters to describe the population decay: (i) k1, the rate 459 

constant in the first exponential decay, is the decay rate of the non-persistent 460 

population; (ii) τ0 is the time from which only persister cells are alive, which is when 461 

the probability distribution changes from the exponential decay to the power-law or 462 
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the second exponential decay; (iii) �, the power-law exponent or k2, the rate constant 463 

in the second exponential decay. Therefore, in our simulations, we considered these 464 

three parameters together (k1, τ0, and � or k1, τ0, and k2). We used a fourth parameter 465 

(spreading constant) representing the rate increase of the detoxified area – this area 466 

increases around each resistant bacterium due to the detoxifying enzyme's diffusion.  467 

To find the parameters that best fit the experimental results [14], we combined 468 

the following parameters: (i) τ0 ∈ {20, 30, 50, 60, 70, 80, 90, 100, 110, 120, 130, 150, 469 

200, 250, 300, 350, 400}; (ii) k1 ∈ {0.015, 0.020, 0.025, 0.030, 0.040, 0.045, 0.050, 470 

0.055, 0.060, 0.065, 0.070, 0.075, 0.080, 0.090, 0.095, 0.100, 0.200}; (iii) � ∈ { -1.1, -471 

1.2, -1.5, -1.7, -1.8, -1.9, -2.0, -2.1, -2.2, -2.3, -2.4, -2.5, -2.7, -2.9, -3.1, -3.3, -3.5} or k2 ∈ 472 

{0.001, 0.005, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050}, a total of 473 

17
3
 = 4913 combinations (assuming that the persistent population decays according to 474 

power-law) or 17*11*11 = 2057 combinations (assuming exponential decay), since k2 475 

has to be lower than ��. For each combination of these parameters, we tested 476 

spreading rates C ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 4, 6, 8, 10, 12, 14, 16, 18, 477 

20}. Then, by comparing the computational results with the experimental ones, we 478 

obtained a set of parameters that explained the experimental results of the three 479 

frequencies (1R:99S, 50R:50S, 99R:1S) in low and high density. We included the 480 

possibility of experimental error; that is, we allowed our results to differ from 481 

experimental results according to a certain error-margin (see the Methods section).  482 

Assuming that there was no error or that the error-margin is 2, we could not 483 

find any combination of parameters (k1, τ0, �, nor k1, τ0, and k2) explaining the 484 

experimental results. We found six combinations with an error margin of 4 when 485 

assuming that persisters decay according to a power-law distribution and two 486 
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combinations when assuming that persisters decay exponentially (Table 4). The 487 

detoxified area's spreading parameter varied considerably in these combinations, 488 

probably due to different experimental conditions (see Discussion). 489 

Table 4. The parameters of the simulations that explain the experimental results 

Do persister cells leave 

the dormant state as 

soon as the medium 

becomes detoxified? 

Type of 

decay 
τ0 k1 β k1 

Range of spreading 

parameter 

Yes 

Power-law 

20 0.07 -2.3 

NA 

0.4 to 10 

20 0.075 -2.3 0.4 to 14 

20 0.08 -2.2 0.4 to 10 

20 0.09 -2.1 0.4 to 12 

50 0.07 -2.5 0.4 to 12 

60 0.07 -2.2 0.4 to 14 

Exponential 
70 0.07 

NA 
0.005 0.4 to 14 

80 0.065 0.005 0.2 to 10 

No 

Power-law 

20 0.065 -2.1 

NA 

0.4 to 10 

20 0.07 -2.1 0.4 to 10 

30 0.075 -2.1 0.4 to 10 

Exponential 
70 0.07 

NA 
0.005 0.4 to 14 

80 0.065 0.005 0.2 to 10 

 490 

 491 

In the simulations presented until now, persister cells were resuming growth as 492 

soon as the medium became detoxified. To understand the impact of this assumption, 493 

we repeated the simulations, this time assuming that persister cells stay in the 494 

dormant state even when the medium becomes nontoxic. Therefore, in this case, 495 

persister cells resume growth stochastically, independently of the antibiotic's presence 496 

in the medium, and, as in the previous case, they do that according to the power-law 497 
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distribution or the second exponential distribution. We found three combinations with 498 

an error margin of 4 if the persistent population decays according to a power-law 499 

distribution (Table 4) and one combination if the persistent population decays 500 

exponentially (Table 4).  501 

During simulations, we also quantified the number of persistent and non-502 

persistent bacteria throughout generations. Therefore, we can analyze how many 503 

susceptible cells in the final population originated from non-persister and how many 504 

from persister cells. We have done this analysis for each combination of parameters 505 

presented in Table 4. The supporting S1 to S12 Tables show the results of the analyses.  506 

All susceptible bacteria observed at the end of the experiments in the low-507 

density cases descend from persistent bacteria (S1 Table to S12 Table). When the 508 

density was high, some non-persistent bacteria also survived in the early generations. 509 

As non-persister bacteria duplicate in each generation (contrary to dormant persister 510 

cells), they may become strongly represented at the end of the experiment (this is 511 

observed for the cases of high density, frequencies 1R:99S and 50R:50S), even if they 512 

were a minority of the surviving cells (S1 Table to S12 Table). 513 

When the initial number of β-lactamase-producing cells was too low to detoxify 514 

the agar-plate fully, persister cells maintained their state until the end of the 515 

experiment (i.e., until 24h later when cells were finally plated in a medium without 516 

antibiotic for quantification). Such permanence of bacteria in the persister state 517 

occurred when the initial number of β-lactamase-producer cells was low, when the 518 

initial total cell density was low (for the three frequencies), or when the initial cell 519 

density was high but the initial frequency of β-lactamase-producing cells was low 520 
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(1R:99S) or intermediate (50R:50S) (S1 Table to S12 Table). In these cases, resistant 521 

cells spent all resources before the detoxification of the agar-plate.  522 

The impact of plasmid transfer in susceptible cells 523 

survival is negligible 524 

As explained before, we used experimental data obtained with resistant cells 525 

that were encoding the detoxifying enzyme in a transferable (conjugative) plasmid, the 526 

R1 plasmid. Therefore, plasmids may move (by replication) into susceptible cells and 527 

form transconjugants, here broadly defined as cells that received the R1 plasmid and 528 

their descendants. Transconjugants become producers of β-lactamase, hence able to 529 

detoxify the environment.  530 

Transconjugants represent a small percentage (between 0% and 1%) of the 531 

susceptible cells in the experiments performed with the R1 plasmid by Domingues et 532 

al. (ref. [14]) (Table 1). 533 

Because we estimated the number of generations completed in the agar-plate, 534 

it is possible to assess transconjugants' impact on indirect resistance. If there are T 535 

transconjugants at the end of the experiment, and assuming that the contribution to 536 

the detoxification is the highest if all transconjugants formed at the end of the first 537 

generation, there would be T/2ng transfer events, where ng is the total number of 538 

generations (we are assuming that, at the end of the first generation, resistant cells 539 

have already replicated once). In Table 5, we show the number of generations, the 540 

final number of transconjugants observed in the agar-plate, the estimated number of 541 

plasmid transfers, and the proportion of resistant cells that are transconjugants. In all 542 

cases, the proportion of transconjugants among all cells capable of detoxifying the 543 
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medium was extremely low (0.0011% or less). Therefore, the impact of 544 

transconjugants on the detoxification of the medium must have been shallow. 545 

 546 

 547 

 548 

Table 5 - The impact of plasmid transfer to detoxification is low. 

Density Frequency 
Number of 

generations 
Transconjugants 

Number of 

resistant 

cells in the 

1st 

generation 

Estimated 

number of 

plasmid 

transfers 

in the 1st 

generation 

Proportion of 

resistant cells 

that are 

transconjugants 

Low 

1R:99S 22.0 0 4.24x10
3
 0 0 

50R:50S 21.6 0 2.45x10
4
 0 0 

99R:1S 16.2 0 3.74x10
5
 0 0 

High 

1R:99S 18.2 1.03x10
2
 1.40x10

5
 0 0 

50R:50S 13.9 1.60x10
4
 1.00x10

6
 1 1.00x10

-6
 

99R:1S 6.9 1.39x10
5
 1.08x10

8
 1164 1.10x10

-5
 

 549 

Mathematical description of the persistent sub-550 

population and biological implications 551 

Although close to -2, the exponent found by Simsek and Kim (ref. [21]) was -552 

2.1, as were most exponents found in this study (ranging from -2.5 to -2.1). It seems 553 

that the persistent population decays slightly faster than according to 1/t
2
. Therefore, 554 

it is relevant to understand how heterogeneous populations should decay. We argue in 555 

this section that, if the persistent population is heterogeneous, it should decay 556 

according to a distribution close to a power-law but not precisely according to this 557 

distribution. 558 

Following the argument by Simsek and Kim (2019), consider a homogeneous 559 

population of antibiotic-susceptible cells in the presence of a bactericidal antibiotic. If 560 
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a non-growing cell rejuvenates (here defined as resuming growth, see below), it dies 561 

due to the antibiotic. Therefore, the number of cells still alive at a given time t 562 

decreases according to 
�����

��
� ���. ��	
, where k1 is the rejuvenation probability 563 

constant. The solution of this differential equation is ��	
 � ��0
. �
�����. 	
. The 564 

rejuvenation probability refers to the number of cells resuming growth in the time 565 

interval, which is proportional to the number of cells still alive: 566 

��	
. �	 � ����	
 �  ��� . �
����� . 	
. �	. 567 

On the other hand, a subpopulation of the cells with various problems in the 568 

metabolism, in the cell replication cycle, or even the cell's response to these problems, 569 

stop dividing for some time [20,21]. Each bacterium may have a different issue from a 570 

big group of possible problems. Therefore, these bacteria should present a wide range 571 

of rejuvenation constants [21]. This bacterial population is heterogeneous, with many 572 

different k constants. The number of cells resuming growth at a particular time t, ��	
, 573 

is proportional to: 574 

� �. �
���	. �

�

�	�

 � � �. �
���	. �
. ��



�

 

If the population decays between time τ0 and tMax, then the integral's limits are 575 

a > 1/τ0 and b < 1/tMax. This lower limit b is close to zero because tMax is high - the 576 

persistent population endures a long time [21]. 577 

Note that, until now, we only know that the upper limit of the integral, a, has 578 

to be higher than 1/τ0. We now argue that this upper limit has to be lower than k1. This 579 

limit arises from the fact that cells in this heterogeneous sub-population rejuvenate 580 

later than the non-persister cells - their rejuvenation constant should be lower than 581 

that of the non-persister cells. Therefore, the integral becomes: 582 
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� �. �
���	. �
. ����



� ���������.�������.��

��
   (1) 583 

where k1 is the rejuvenation constant of the non-persister population.  584 

In general, 
���������.�������.��

��
� 	��. 585 

Experimental results from ref. [21] have shown that the persistent population 586 

starts decaying after about 93 min and k1 is about 0.063 min
-1

. Therefore, k1.t ⋍ 5.859 587 

or higher and increases in time, so the numerator in Equation 1 is 0.98 (that is 588 

1 � �
����� . 	
�1 � �� . 	
 � 0.98). Therefore, in general 
���������.�������.��

��
� 	��. 589 

This result may explain why Simsek and Kim (ref. [21]) derived an exponent from their 590 

experiments of -2.1, which is slightly lower than their theoretical prediction of -2. 591 

However, when t increases, the numerator of Equation 1 converges to 1, which means 592 

that the power-law t
β
 should converge to t

-2
 when t increases. 593 

Likewise, our results for the power-law decay (Table 4) suggest that the 594 

persistent population starts decaying after about 20 to 60 min, and k1 is between 0.065 595 

and 0.09 min
-1

. Therefore, k1.t ⋍ between 1.3 and 4.2 and increases in time (because t 596 

increases), so the numerator in Equation 1 is between 0.37 and 0.92. Again, our results 597 

suggest that 
���������.�������.��

��
� 	�� and also explains why we obtained exponents 598 

slightly lower than -2.  599 

 600 

In this work, we show the involvement of persistent cells during the process of 601 

indirect resistance, even in short-time experiments of 24h (like the ones performed in 602 

ref. [14]), and that, most likely, persister cells decay according to t
β
 where β is slightly 603 

lower than -2.  604 

  605 
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Discussion 606 

To understand persisters' behavior, we started by asking whether they were 607 

responsible for the survival of susceptible cells in the context of indirect resistance. For 608 

that,  we carried out simulations to mimic the experiments that we have performed in 609 

a previous work where we spread a mixture of susceptible and β-lactamase-producing 610 

cells in agar-plates supplemented with a β-lactam antibiotic [14]. We simulated the 611 

behavior of persister cells in four different ways: (i) in the presence of a bactericidal 612 

antibiotic, the persistent population decays according to an exponential-law versus 613 

according to a power-law; (ii) persister cells leave the dormant state as soon as the 614 

medium becomes detoxified versus independently of the medium detoxification, 615 

hence merely according to the probability mentioned above. Our simulations suggest 616 

that persister cells and their descendants were a part, or even all, of the surviving 617 

susceptible population, irrespectively of the four alternative behavior models of the 618 

persister cells implemented in the simulations. Persisters were the only survivors in the 619 

indirect resistance phenomenon when the initial cell density was low.  620 

Given persistent cells' involvement, we used the results to go more in-depth 621 

and understand their nature. Arguably, the prevalent view is that persistence is an 622 

evolved characteristic. If genetically encoded, the expectation would be that the 623 

persistent population is homogeneous and decays exponentially [25]. Instead, a few 624 

recent works have proposed that persistence is an accidental consequence of 625 

inadvertent cell problems and errors [19,20]. In this case, the persistent populations 626 

should be heterogeneous because cells would have different reasons for showing low 627 

metabolism, and the consequent theoretical prediction is that the persistent 628 
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population should decay, not exponentially, but according to a power-law with the 629 

exponent of -2 [21] or slightly lower than -2 (this paper).  630 

The exponential decays are direct consequences of first-order kinetics. The 631 

exponential declines occur in various situations, from radioactive decay to the drop of 632 

atmospheric pressure with increasing height above sea level. And, of course, the non-633 

persister bacterial population also decays exponentially in time because the bacterial 634 

population is large, homogenous, and the law of large numbers holds. There is no 635 

theoretical prediction for the decay rate (so far) if the persistent population declines 636 

exponentially. Our simulations show that an exponential decline of persisters is 637 

possible only for shallow values of the decay constant - this allows the survival of 638 

persister cells for several hours in the experiments. However, Simsek and Kim (ref. 639 

[21]) were able to mathematically predict the exponent in the power-law case, namely 640 

that it should be -2. Likewise, we found exponents close to -2 in the simulations where 641 

we assume that persisters' decay follows a power-law (Table 4). 642 

It is relevant to emphasize that, despite the similarity of the exponent values 643 

found here (based on the experiments from ref. [14]) and in the Simsek and Kim' study 644 

[21], the experimental methods of these two studies were significantly different. While 645 

Simsek and Kim [21] studied the decay of the susceptible population in a liquid and 646 

well-mixed medium without resistant cells, the experiments simulated here (based in 647 

ref. [14]) were performed in agar-plates where some susceptible cells die due to the 648 

antibiotic and others survive thanks to persistence or the effect of indirect resistance. 649 

The similarity of the exponents found with two different experimental methods, with 650 

the one predicted theoretically [21], suggests that the persistent population indeed 651 

decays according to power-law. 652 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427471doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427471
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

 

We evaluated the impact of persister cells resuming growth as soon as the 653 

medium is nontoxic versus resuming growth stochastically, independently of the 654 

antibiotic's presence in the medium. We found reasonable sets of parameters using 655 

both behavioral models. Therefore, strictly speaking, we could not conclude whether 656 

persister cells leave the dormant state and resume growth when the medium is 657 

nontoxic. However, returning to growth immediately after detoxification implies a 658 

sensing mechanism, suggesting that persistence is an evolved mechanism, not the 659 

result of inadvertent metabolic and cell replication problems. In that way, it is 660 

contradictory to assume simultaneously that persistent cells leave the dormant state 661 

as soon as the medium is nontoxic and that the persistent population decays according 662 

to power-law. These were the assumptions leading to the first six lines of Table 4. 663 

Consequently, we should discard the exponents shown in this part of Table 4. We 664 

conclude that the exponent value of the power-law t
β
 is β = -2.1 (lines 9 to 11 of Table 665 

4). This value is the same exponent experimentally measured by Simsek and Kim (ref. 666 

[21]).  667 

The coincidence of the exponent values in this work and Simsek and Kim (ref. 668 

[21]) work is impressive, but there should be an explanation for the discrepancy from 669 

the theoretical prediction of -2. We have shown that heterogeneous populations 670 

should decay according to 
���������.�������.��

��
 , which is close to but slightly lower than 671 

�

��
. Such discrepancy may explain why our simulations and Simsek and Kim's 672 

experiments point to exponents slightly lower than -2. Both theoretical predictions 673 

assumed that several sub-populations of cells constitute the persistent population. The 674 

difference between the two theoretical predictions is that our derivation assumes that 675 
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no hypothetic subpopulations are decaying faster than non-persister cells. This 676 

assumption implies fewer cells alive in the persistent state than predicted before [21]. 677 

As time passes, the two mathematical predictions converge because even if we were 678 

including the subpopulations decaying faster than the non-persistent population, 679 

those cells would already be dead. 680 

Given that we simulated bacteria in the agar-plate, we had to consider the 681 

radial spreading of β-lactamase around their producers (resistant cells) and the 682 

subsequent decrease in antibiotic concentration. The system has some complexity 683 

because, in some simulations, the initial number of resistant cells can be high and 684 

because there is undoubtedly diffusion of β-lactamase from each resistant bacterium 685 

and of the antibiotic towards each resistant bacterium. It is even possible that the 686 

detoxifying area increases as a diffusion wave. Moreover, resistant cells duplicate 687 

every half an hour, probably increasing the β-lactamase enzyme production outwards 688 

the resistant colony. Therefore, we assumed that the detoxified area increases 689 

monotonically in time. Future studies should scrutinize the relevance of this 690 

assumption. We had to consider a wide range of values for the detoxified area's speed 691 

of increase to fit the experimental results. This range may have several causes. For 692 

example, although the agar concentration was the same in all experiments, some 693 

plates could be more dried than others, eventually facilitating or hampering the 694 

detoxifying enzyme molecules and antibiotic molecules' movement. 695 

Table 5 shows that transconjugants' participation in the detoxification of the 696 

agar-plate must have been low. This result agrees with previous works showing that 697 

the transfer rate of the R1 plasmid is low [14,22,24,26,27].  698 
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Several resistance determinants, including genes and chromosomal mutations, 699 

are responsible for the burden of antibiotic resistance. This burden is tremendous. Just 700 

in the European Economic Area, antibiotic resistance is responsible for 33000 701 

deaths/year and 874000 disability-adjusted life-years [28]. Unfortunately, to survive 702 

bactericidal antibiotics, bacteria do not even need to harbor resistance determinants. 703 

Susceptible bacteria may rely on indirect resistance and bacterial persistence, as we 704 

have seen. Therefore, this work's conclusions that persistence is often involved in 705 

indirect resistance and that persister cells seem to decay according to a power-law are 706 

worrying.  707 

The power-law distribution has a long tail, which means that, at least 708 

theoretically, some susceptible bacteria may survive for several weeks, eventually after 709 

the end of antibiotic uptake by the patient. Long-lived persisters may dictate 710 

treatments' failure because some of these cells may leave the dormant state and 711 

reinitiate their pathogenic effects. This risk goes in line with the reports on persistence 712 

being a significant cause for recurrent and chronic infections,  dictating the patients' 713 

disease progression and outcome [29,30] 714 

In conclusion, this work supports the hypothesis that the persistent population 715 

decays according to a power-law with an exponent close to -2. As Simsek and Kim (ref. 716 

[21]) argued, such power-law decay means that persistence is the consequence of 717 

accidental problems involving replication and metabolism, instead of being an evolved 718 

character (see also [19,20]). If confirmed, the implication is that persistence is 719 

maladaptive, despite its frequent dramatic medical consequences. A strategy to find 720 

anti-persistent drugs should perhaps be different if persisters are moribund cells 721 

versus the result of an evolved genetic program.  722 
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Supporting information captions 819 

S1 Table. Persister and non-persister cells that originated the final susceptible 820 

population considering  τ0 = 20, �� = 0.07, � = -2.3.  821 

Results of simulations when we assumed that the persister population decays 822 

according to a power-law and that persister cells leave the dormant state as soon as 823 

the medium becomes detoxified. 824 

S2 Table. Persister and non-persister cells that originated the final susceptible 825 

population considering τ0 = 20, �� = 0.075, � = -2.3. 826 

Results of simulations when we assumed that the persister population decays 827 

according to a power-law and that persister cells leave the dormant state as soon as 828 

the medium becomes detoxified. 829 

S3 Table. Persister and non-persister cells that originated the final susceptible 830 

population considering τ0 = 20, �� = 0.08, � = -2.2. 831 

Results of simulations when we assumed that the persister population decays 832 

according to a power-law and that persister cells leave the dormant state as soon as 833 

the medium becomes detoxified. 834 

S4 Table. Persister and non-persister cells that originated the final susceptible 835 

population considering τ0 = 20, �� = 0.09, � = -2.1. 836 

Results of simulations when we assumed that the persister population decays 837 

according to a power-law and that persister cells leave the dormant state as soon as 838 

the medium becomes detoxified. 839 

S5 Table. Persister and non-persister cells that originated the final susceptible 840 

population considering τ0 = 50, �� = 0.07, � = -2.5. 841 

Results of simulations when we assumed that the persister population decays 842 

according to a power-law and that persister cells leave the dormant state as soon as 843 

the medium becomes detoxified. 844 

S6 Table. Persister and non-persister cells that originated the final susceptible 845 

population considering τ0 = 60, �� = 0.07, � = -2.2. 846 

Results of simulations when we assumed that the persister population decays 847 

according to a power-law and that persister cells leave the dormant state as soon as 848 

the medium becomes detoxified. 849 

S7 Table. Persister and non-persister cells that originated the final susceptible 850 

population considering τ0 = 70, �� = 0.07, �� = 0.005. 851 

Results of simulations when we assumed that the persister population decays 852 

according to an exponential-law and that persister cells leave the dormant state as 853 

soon as the medium becomes detoxified. 854 

 855 

S8 Table. Persister and non-persister cells that originated the final susceptible 856 

population considering τ0 = 80, �� = 0.065, �� = 0.005. 857 

Results of simulations when we assumed that the persister population decays 858 

according to an exponential-law and that persister cells leave the dormant state as 859 

soon as the medium becomes detoxified. 860 
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S9 Table. Persister and non-persister cells that originated the final susceptible 861 

population considering τ0 = 20, �� = 0.065, � = -2.1. 862 

Results of simulations when we assumed that the persister population decays 863 

according to a power-law and that persister cells do not leave the dormant state as 864 

soon as the medium becomes detoxified. 865 

S10 Table. Persister and non-persister cells that originated the final 866 

susceptible population considering  τ0 = 20, �� = 0.07, � = -2.1. 867 

Results of simulations when we assumed that the persister population decays 868 

according to a power-law and that persister cells do not leave the dormant state as 869 

soon as the medium becomes detoxified. 870 

S11 Table. Persister and non-persister cells that originated the final 871 

susceptible population considering  τ0 = 30, �� = 0.075, � = -2.1. 872 

Results of simulations when we assumed that the persister population decays 873 

according to a power-law and that persister cells do not leave the dormant state as 874 

soon as the medium becomes detoxified. 875 

S12 Table. Persister and non-persister cells that originated the final 876 

susceptible population considering  τ0 = 80, �� = 0.065, �� = 0.005. 877 

Results of simulations when we assumed that the persister population decays 878 

according to an exponential-law and that persister cells do not leave the dormant state 879 

as soon as the medium becomes detoxified. 880 

 881 

 882 
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