137 research outputs found

    This is Who I Am: Identity Development and Importance Among Diverse Youth from LGBTQ+ Parent Families

    Get PDF
    Although the literature on identity and related constructs among adolescents, emerging adults, and diverse populations is growing, little research has investigated identity among adolescents and emerging adults specifically in the context of LGBTQ+ parent families. The present study seeks to fill this gap in the literature by qualitatively investigating identity development and importance among diverse youth with LGBTQ+ parents. Participants are 51 youth (ages 12-25 years) with at least one LGBTQ+ parent. Trained personnel conducted remote, audio-recorded, semi-structured interviews from December 2018-February 2020. Interviews included questions about participants’ individual identities and conversations they have had with their parents about those identities. Using inductive thematic analysis, a trained team has coded responses from transcribed interviews. Analyses revealed six themes surrounding participants’ identities: Identity Type, Appearance, Representation Responsibility, Interaction between Personal Identity and Parent/Family Identity, Community Impact on Identity Development, and Interaction of Personal Identities. Themes indicate that parent identity, family identity, and community all impact the personal identities of youth with LGBTQ+ parents. Findings contribute to current psychological literature on identity and LGBTQ+ families, and help support and highlight this population across health settings, law and policy, as well as broad societal understanding

    The use of meteorological analogues to account for LAM QPF uncertainty

    No full text
    International audienceFlood predictions based on quantitative precipitation forecasts (QPFs) provided by deterministic models do not account for the uncertainty in the outcomes. A probabilistic approach to QPF, one which accounts for the variability of phenomena and the uncertainty associated with a hydrological forecast, seems to be indispensable to obtain different future flow scenarios for improved flood management. A new approach based on a search for analogues, that is past situations similar to the current one under investigation in terms of different meteorological fields over Western Europe and East Atlantic, has been developed to determine an ensemble of hourly quantitative precipitation forecasts for the Reno river basin, a medium-sized catchment in northern Italy. A statistical analysis, performed over a hydro-meteorological archive of ECMWF analyses at 12:00 UTC relative to the autumn seasons ranging from 1990 to 2000 and the corresponding precipitation measurements recorded by the raingauges spread over the catchment of interest, has underlined that the combination of geopotential at 500 hPa and vertical velocity at 700 hPa provides a better estimation of precipitation. The analogue-based ensemble prediction has to be considered not alternative but complementary to the deterministic QPF provided by a numerical model, even when employed jointly to improve real-time flood forecasting. In the present study, the analogue-based QPFs and the precipitation forecast provided by the Limited Area Model LAMBO have been used as different input to the distributed rainfall-runoff model TOPKAPI, thus generating, respectively, an ensemble of discharge forecasts, which provides a confidence interval for the predicted streamflow, and a deterministic discharge forecast taken as an error-affected "measurement" of the future flow, which does not convey any quantification of the forecast uncertainty. To make more informative the hydrological prediction, the ensemble spread could be regarded as a measure of the uncertainty of the deterministic forecast

    The use of meteorological analogues to account for LAM QPF uncertainty

    No full text
    International audienceFlood predictions issued employing quantitative precipitation forecasts (QPFs) provided by deterministic models do not account for the uncertainty in the outcomes. A probabilistic approach to QPF seems to be indispensable to obtain different future flow scenarios that allow to manage the flood accounting for the variability of phenomena and the uncertainty associated with an hydrological forecast. A new approach based on a search for past situations (analogues), similar to previous and current day in terms of different meteorological fields over Western Europe and East Atlantic, has been developed to determine an ensemble of hourly quantitative precipitation forecasts for the Reno river basin, a medium-sized catchment in northern Italy. A statistical analysis, performed over an hydro-meteorological archive collecting ECMWF analyses at 12:00 UTC relative to the autumn seasons ranging from 1990 to 2000 and the corresponding precipitation measurements recorded by the raingauges spread over the catchment of interest, has underlined that the combination of geopotential at 500 hPa and vertical velocity at 700 hPa provides a better estimation of precipitation. The analogue-based ensemble prediction has to be considered not alternative but complementary with the deterministic QPF provided by a numerical model, even in view of a joint employment to improve real-time flood forecasting. In the present study, the analogue-based QPFs and the precipitation forecast provided by the Limited Area Model LAMBO have been used as different input to the distributed rainfall-runoff model TOPKAPI, thus generating, respectively, an ensemble of discharge forecasts, which provides a confidence interval for the predicted streamflow, and a deterministic discharge forecast taken as an error affected "measurement'' of the future flow, which does not convey any quantification of the forecast uncertainty. To make more informative the hydrological prediction, the ensemble spread could be regarded as a measure of the uncertainty of the deterministic forecast

    A meteo-hydrological prediction system based on a multi-model approach for precipitation forecasting

    Get PDF
    International audienceThe precipitation forecasted by a numerical weather prediction model, even at high resolution, suffers from errors which can be considerable at the scales of interest for hydrological purposes. In the present study, a fraction of the uncertainty related to meteorological prediction is taken into account by implementing a multi-model forecasting approach, aimed at providing multiple precipitation scenarios driving the same hydrological model. Therefore, the estimation of that uncertainty associated with the quantitative precipitation forecast (QPF), conveyed by the multi-model ensemble, can be exploited by the hydrological model, propagating the error into the hydrological forecast. The proposed meteo-hydrological forecasting system is implemented and tested in a real-time configuration for several episodes of intense precipitation affecting the Reno river basin, a medium-sized basin located in northern Italy (Apennines). These episodes are associated with flood events of different intensity and are representative of different meteorological configurations responsible for severe weather affecting northern Apennines. The simulation results show that the coupled system is promising in the prediction of discharge peaks (both in terms of amount and timing) for warning purposes. The ensemble hydrological forecasts provide a range of possible flood scenarios that proved to be useful for the support of civil protection authorities in their decision

    Inhibition of LPS-Induced Inflammatory Response of Oral Mesenchymal Stem Cells in the Presence of Galectin-3

    Get PDF
    Galectin-3 (GAL-3) is a beta-galactoside binding lectin produced by mesenchymal stem cells (MSCs) and other cell sources under inflammatory conditions. Several studies have reported that GAL-3 exerts an anti-inflammatory action, regulated by its natural ligand GAL-3 BP. In the present study, we aimed to assess the GAL-3 mediated regulation of the MSC function in an LPS-induced inflammation setting. Human gingival mesenchymal stem cells (hGMSCs) were stimulated in vitro with LPSs; the expression of TLR4, NFκB p65, MyD88 and NALP3 were assessed in the hGMSCs via immunofluorescence imaging using confocal microscopy, Western blot assay, and RT-PCR before and after the addition of GAL-3, both alone and with the addition of its inhibitors. LPSs stimulated the expression of TLR4, NFκB p65, MyD88 and NALP3 in hGMSCs, which was inhibited by GAL-3. The addition of either GAL3-BP or the antibody to GAL-3 were able to revert the GAL-3-mediated effects, restoring the expression of TLR4, NFκB p65, MyD88 and NALP3. GAL-3 induces the downregulation of the LPS-induced inflammatory program in MSCs

    A hydrometeorological model intercomparison as a tool to quantify the forecast uncertainty in a medium size basin

    Get PDF
    Abstract. In the framework of AMPHORE, an INTERREG III B EU project devoted to the hydrometeorological modeling study of heavy precipitation episodes resulting in flood events and the improvement of the operational hydrometeorological forecasts for the prediction and prevention of flood risks in the Western Mediterranean area, a hydrometeorological model intercomparison has been carried out, in order to estimate the uncertainties associated with the discharge predictions. The analysis is performed for an intense precipitation event selected as a case study within the project, which affected northern Italy and caused a flood event in the upper Reno river basin, a medium size catchment in the Emilia-Romagna Region. Two different hydrological models have been implemented over the basin: HEC-HMS and TOPKAPI which are driven in two ways. Firstly, stream-flow simulations obtained by using precipitation observations as input data are evaluated, in order to be aware of the performance of the two hydrological models. Secondly, the rainfall-runoff models have been forced with rainfall forecast fields provided by mesoscale atmospheric model simulations in order to evaluate the reliability of the discharge forecasts resulting by the one-way coupling. The quantitative precipitation forecasts (QPFs) are provided by the numerical mesoscale models COSMO and MM5. Furthermore, different configurations of COSMO and MM5 have been adopted, trying to improve the description of the phenomena determining the precipitation amounts. In particular, the impacts of using different initial and boundary conditions, different mesoscale models and of increasing the horizontal model resolutions are investigated. The accuracy of QPFs is assessed in a threefold procedure. First, these are checked against the observed spatial rainfall accumulations over northern Italy. Second, the spatial and temporal simulated distributions are also examined over the catchment of interest. And finally, the discharge simulations resulting from the one-way coupling with HEC-HMS and TOPKAPI are evaluated against the rain-gauge driven simulated flows, thus employing the hydrological models as a validation tool. The different scenarios of the simulated river flows – provided by an independent implementation of the two hydrological models each one forced with both COSMO and MM5 – enable a quantification of the uncertainties of the precipitation outputs, and therefore, of the discharge simulations. Results permit to highlight some hydrological and meteorological modeling factors which could help to enhance the hydrometeorological modeling of such hazardous events. Main conclusions are: (1) deficiencies in precipitation forecasts have a major impact on flood forecasts; (2) large-scale shift errors in precipitation patterns are not improved by only enhancing the mesoscale model resolution; and (3) weak differences in flood forecasting performance are found by using either a distributed continuous or a semi-distributed event-based hydrological model for this catchment

    Effect of gas properties on the dynamics of the electrical slope asymmetry effect in capacitive plasmas : comparison of Ar, H2 and CF4

    Get PDF
    Tailored voltage excitation waveforms provide an efficient control of the ion energy (through the electrical asymmetry effect) in capacitive plasmas by varying the 'amplitude' asymmetry of the waveform. In this work, the effect of a 'slope' asymmetry of the waveform is investigated by using sawtooth-like waveforms, through which the sheath dynamic can be manipulated. A remarkably different discharge dynamic is found for Ar, H2, and CF4 gases, which is explained by the different dominant electron heating mechanisms and plasma chemistries. In comparison to Argon we find that the electrical asymmetry can even be reversed by using an electronegative gas such as CF4. Phase resolved optical emission spectroscopy measurements, probing the spatiotemporal distribution of the excitation rate show excellent agreement with the results of particle-in-cell simulations, confirming the high degree of correlation between the excitation rates with the dominant heating mechanisms in the various gases. It is shown that, depending on the gas used, sawtooth-like voltage waveforms may cause a strong asymmetry

    Insight into contraction dynamics of microwave plasmas for CO2 conversion from plasma chemistry modelling

    Get PDF
    This work addresses plasma chemistry in the core of a vortex-stabilized microwave discharge for CO2 conversion numerically, focusing on the pressure-dependent contraction dynamics of this plasma. A zero-dimensional model is presented for experimental conditions in a pressure range between 60 and 300 mbar and a temperature range between 3000 and 6500 K. Monte Carlo Flux simulations, which describe electron kinetics, are self-consistently coupled to the plasma chemistry model. The simulation results show that an increase in pressure is accompanied by a transition in neutral composition in the plasma core: from a significant amount of CO2 and O2 at low pressures to a O/CO/C mixture at high pressures, the composition being determined mostly by thermal equilibrium and by transport processes. The change of temperature and composition with pressure lead to higher ionisation coefficient and more atomic ion composition in the plasma core. These changes result in an increase in ionisation degree in the plasma core from 10-5 to 10-4. These factors are shown to be fundamental to drive contraction in the CO2 microwave discharge.</p

    Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Get PDF
    International audienceThe charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15--20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity
    corecore