109 research outputs found

    Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness

    Get PDF
    We investigate numerically the effect of a finite metal film thickness on the propagation characteristics of the channel plasmon polariton (CPP) and wedge plasmon polariton (WPP) modes, both in a symmetric and asymmetric environment. We observe that decreasing the metal thickness results in an improvement of the field localization near the groove tip and an increase of the losses for both types of mode. This behavior stems from the typical symmetric charge distribution of both modes across the metal film. When considering an asymmetric dielectric environment, the CPP mode is found to evolve into short range plasmon modes propagating along the groove walls, in contrast to the WPP mode which remains essentially confined at the tip apex. These results can be useful to tailor the properties of such plasmon modes, using the metal thickness as the variable parameter. (C) 2009 Optical Society of Americ

    A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles

    Get PDF
    We introduce a novel bottom-up approach to fabricate by self assembly a metamaterial from metallic nanoparticles in a two-step process. In the first step, a metamaterial made of densely packed silver nanoparticles is required. The material dispersion with increasing nanoparticle densities, from dispersed to randomly packed nanoparticles, was measured by spectroscopic ellipsometry, demonstrating high permittivity values in the visible. In the second step, this material was used to prepare spherical clusters by a method based on oil-in-water emulsion. The optical properties of these clusters were equally investigated by spectroscopic means. Comparisons with rigorous numerical simulations clearly indicate that, depending on the cluster size, their spectral response can be unambiguously associated with the excitation of a magnetic dipole resonance. As a consequence, such spherical clusters are promising building blocks for future metamaterials possessing a magnetic response in the visible range

    Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film

    Get PDF
    William L. Barnes, W. Andrew Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Physical Review Letters, Vol. 92, article 107401 (2004). "Copyright © 2004 by the American Physical Society."We present results of the transmitted, reflected, and absorbed power associated with the enhanced transmittance of light through a silver film pierced by a periodic array of subwavelength holes. Comparing experimentally acquired dispersion curves under different polarization conditions shows that the transmission features of the array are consistent with p-polarized resonant modes of the structure. By exploring the regime in which no propagating diffracted orders are allowed, we further show that the transmittance maxima are associated with both reflectance minima and absorption maxima. These new results provide strong experimental evidence for transmission based on diffraction, assisted by the enhanced fields associated with surface plasmon polaritons

    A single-photon transistor using nano-scale surface plasmons

    Full text link
    It is well known that light quanta (photons) can interact with each other in nonlinear media, much like massive particles do, but in practice these interactions are usually very weak. Here we describe a novel approach to realize strong nonlinear interactions at the single-photon level. Our method makes use of recently demonstrated efficient coupling between individual optical emitters and tightly confined, propagating surface plasmon excitations on conducting nanowires. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire, which can be coherently controlled using quantum optical techniques. As a novel application, we discuss how the interaction can be tailored to create a single-photon transistor, where the presence or absence of a single incident photon in a ``gate'' field is sufficient to completely control the propagation of subsequent ``signal'' photons.Comment: 20 pages, 4 figure

    Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays

    Get PDF
    J. Dintinger, S. Klein, F. Bustos, William L. Barnes, and T. W. Ebbesen, Physical Review B, Vol. 71, article 035424 (2005). "Copyright © 2005 by the American Physical Society."The interaction of a J-aggregate and surface plasmon polariton modes of a subwavelength hole array have been studied in detail. By measuring the effects of hole array period, angular dispersion and concentration of the J-aggregate on the transmission of the array, the existence of a strong coupling regime is demonstrated with a Rabi splitting of 250 meV. This large splitting is explained not only by the high oscillator strength of the dye but also by the high local field amplitudes generated by surface plasmons of the metallic structure

    Modulation of surface plasmon coupling-in by one-dimensional surface corrugation

    Full text link
    Surface plasmon-polaritons have recently attracted renewed interest in the scientific community for their potential in sub-wavelength optics, light generation and non-destructive sensing. Given that they cannot be directly excited by freely propagating light due to their intrinsical binding to the metal surface, the light-plasmon coupling efficiency becomes of crucial importance for the success of any plasmonic device. Here we present a comprehensive study on the modulation (enhancement or suppression) of such coupling efficiency by means of one-dimensional surface corrugation. Our approach is based on simple wave interference and enables us to make quantitative predictions which have been experimentally confirmed at both the near infra-red and telecom ranges.Comment: 20 pages, 13 figures, submitted to New Journal of Physics, revised tex

    Cooperative coupling of ultracold atoms and surface plasmons

    Full text link
    Cooperative coupling between optical emitters and light fields is one of the outstanding goals in quantum technology. It is both fundamentally interesting for the extraordinary radiation properties of the participating emitters and has many potential applications in photonics. While this goal has been achieved using high-finesse optical cavities, cavity-free approaches that are broadband and easy to build have attracted much attention recently. Here we demonstrate cooperative coupling of ultracold atoms with surface plasmons propagating on a plane gold surface. While the atoms are moving towards the surface they are excited by an external laser pulse. Excited surface plasmons are detected via leakage radiation into the substrate of the gold layer. A maximum Purcell factor of ηP=4.9\eta_\mathrm{P}=4.9 is reached at an optimum distance of z=250 nmz=250~\mathrm{nm} from the surface. The coupling leads to the observation of a Fano-like resonance in the spectrum.Comment: 9 pages, 4 figure
    corecore