49 research outputs found
Radiocarbon dating of methane and carbon dioxide evaded from a temperate peatland stream
Streams draining peatlands export large quantities of carbon in different chemical forms and
are an important part of the carbon cycle. Radiocarbon (14C) analysis/dating provides unique
information on the source and rate that carbon is cycled through ecosystems, as has recently
been demonstrated at the air-water interface through analysis of carbon dioxide (CO2) lost
from peatland streams by evasion (degassing). Peatland streams also have the potential to
release large amounts of methane (CH4) and, though 14C analysis of CH4 emitted by ebullition
(bubbling) has been previously reported, diffusive emissions have not. We describe methods
that enable the 14C analysis of CH4 evaded from peatland streams. Using these methods, we
investigated the 14C age and stable carbon isotope composition of both CH4 and CO2 evaded
from a small peatland stream draining a temperate raised mire. Methane was aged between
1617-1987 years BP, and was much older than CO2 which had an age range of 303-521 years
BP. Isotope mass balance modelling of the results indicated that the CO2 and CH4 evaded
from the stream were derived from different source areas, with most evaded CO2 originating
from younger layers located nearer the peat surface compared to CH4. The study demonstrates
the insight that can be gained into peatland carbon cycling from a methodological
development which enables dual isotope (14C and 13C) analysis of both CH4 and CO2 collected
at the same time and in the same way
Breeding productivity, nest-site selection and conservation needs of the endemic Turkestan Ground-jay Podoces panderi
The Turkestan Ground-jay Podoces panderi, a corvid endemic to the deserts of Central Asia, is both understudied and under-protected. Using standardised nest-monitoring protocols and nest cameras, we estimated its breeding productivity for the first time as 0.586 fledglings per nesting attempt (inter-quartile range, IQR 0.413‒0.734), strongly constrained by a diverse set of predator species (accounting for 88% of failures), supporting the broad pattern that a wide spectrum of nest predators operate in arid environments. The probability of nest success for the 35 days from the start of incubation to fledging was low, 0.186 ± 0.06 se (N = 37), with no influence of season date, nest height or nest shrub species. However, pervasive shrub harvest severely limited availability of taller shrubs for nest-site selection, and thus our ability to detect any effect of height on nest survival. Mean clutch size was 4.8 ± 0.8 sd while hatching probability of an egg from a clutch surviving incubation was 0.800 ± 0.050 se and fledging probability was 0.824 ± 0.093 se for individual chicks in successful nests (i.e. that fledged one or more chicks). Two shrub genera, saxaul Haloxylon spp. and Calligonum spp., were used for nesting more frequently than expected (χ152 = 784.02, P < 0.001), highlighting their importance to breeding habitat suitability. This near-sole reliance on these taller shrub genera, both targeted for illegal cutting, indicates that habitat degradation may lead to increased predation and declines in productivity. Habitat conservation is, therefore, likely to be the most important management strategy for the species and other components of desert systems, as management of so diverse a set of nest predators would be both impractical and inappropriate
Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland
Plants are a major factor influencing methane emissions from wetlands, along with environmental parameters such as water table, temperature, pH, nutrients and soil carbon substrate. We conducted a field experiment to study how different plant species influence methane emissions from a wetland in Switzerland. The top 0.5 m of soil at this site had been removed five years earlier, leaving a substrate with very low methanogenic activity. We found a sixfold difference among plant species in their effect on methane emission rates: Molinia caerulea and Lysimachia vulgaris caused low emission rates, whereas Senecio paludosus, Carex flava, Juncus effusus and Typha latifolia caused relatively high rates. Centaurea jacea, Iris sibirica, and Carex davalliana caused intermediate rates. However, we found no effect of either plant biomass or plant functional groups – based on life form or productivity of the habitat – upon methane emission. Emissions were much lower than those usually reported in temperate wetlands, which we attribute to reduced concentrations of labile carbon following topsoil removal.
Thus, unlike most wetland sites, methane production in this site was probably fuelled chiefly by root exudation from living plants and from root decay. We conclude that in most wetlands, where concentrations of labile carbon are much higher, these sources account for only a small proportion of the methane emitted. Our study confirms that plant species composition does influence methane emission from wetlands, and should be considered when developing measures to mitigate the greenhouse gas emissions
Recommended from our members
Managing peatland vegetation for drinking water treatment
Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision
Measurement of the 13 C isotopic signature of methane emissions from Northern European wetlands
Isotopic data provide powerful constraints on regional and global methane emissions and their source profiles. However, inverse modeling of spatially-resolved methane flux is currently constrained by a lack of information on the variability of source isotopic signatures. In this study, isotopic signatures of emissions in the Fennoscandian Arctic have been determined in chambers over wetland, in the air 0.3 to 3 m above the wetland surface and by aircraft sampling from 100 m above wetlands up to the stratosphere. Overall the methane flux to atmosphere has a coherent δ13C isotopic signature of -71 ± 1‰, measured in situ on the ground in wetlands. This is in close agreement with δ13C isotopic signatures of local and regional methane increments measured by aircraft campaigns flying through air masses containing elevated methane mole fractions. In contrast results from wetlands in Canadian boreal forest further south gave isotopic signatures of -67 ± 1 ‰. Wetland emissions dominate the local methane source measured over the European Arctic in summer. Chamber measurements demonstrate a highly variably methane flux and isotopic signature, but the results from air sampling within wetland areas show that emissions mix rapidly immediately above the wetland surface and methane emissions reaching the wider atmosphere do indeed have strongly coherent C isotope signatures. The study suggests that for boreal wetlands (>60°N) global and regional modeling can use an isotopic signature of -71‰ to apportion sources more accurately, but there is much need for further measurements over other wetlands regions to verify this.UK Natural Environment Research Council (NERC). Grant Numbers: NE/I028874/1, NE/I014683/1, NE/F020937/1
European Community's Seventh Framework Programme. Grant Number: FP7/2007‐2013
InGOS. Grant Number: 28427
Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: a dual isotope (14C and δ13C) analysis
Radiocarbon isotopes are increasingly being used to investigate the age and source of carbon released from peatlands. Here we use combined 14C and δ13C measurements to determine the isotopic composition of soil and soil decomposition products (dissolved organic carbon (DOC), CO2 and CH4) in a peatland-riparian-stream transect, to establish the isotopic signature and potential connectivity between carbon pools. Sampling was conducted during two time periods in 2012 to investigate processes under different temperature, hydrological and flux conditions. Isotopic differences existed in the peatland and riparian zone soil organic matter as a result of the riparian depositional formation. The peatland had a mean radiocarbon age of 551 ± 133 years BP, with age increasing with depth, and δ13C values consistent with C3 plant material as the primary source. In contrast the riparian zone had a much older radiocarbon age of 1055 ± 107 years BP and showed no age/depth relationship; δ13C in the riparian zone was also consistent with C3 plant material. With the exception of DOC in September, soil decomposition products were predominately >100 %modern with 14C values consistent with derivation from organic matter fixed in the previous 5 years. Emissions of CO2 and CH4 from the soil surface were also modern. In contrast, CO2 and CH4 evaded from the stream surface was older (CH4: 310-537 years BP, CO2: 36 years BP to modern) and contained a more complex mix of sources combining soil organic matter and geogenic carbon. The results suggest considerable vertical transport of modern carbon to depth within the soil profile. The importance of modern recently fixed carbon and the differences between riparian and stream isotopic signatures suggests that the peatland (not the riparian zone) is the most important source of carbon to stream water