202 research outputs found

    Deriving phytoplankton size classes from satellite data: Validation along a trophic gradient in the eastern Atlantic Ocean

    Get PDF
    In recent years, the global distribution of phytoplankton functional types (PFT) and phytoplankton size classes (PSC) has been determined by remote sensing. Many of these methods rely on interpretation of phytoplankton size or type from pigment data, but independent validation has been difficult due to lack of appropriate in situ data on cell size. This work uses in situ data (photosynthetic pigments concentration and cell abundances) from the north-east Atlantic, along a trophic gradient, sampled from 2005 to 2010, as well as Atlantic Meridional Transect (AMT) data for the same region, to test a previously developed conceptual model, which calculates the fractional contributions of pico-, nano- and micro-plankton to total phytoplankton chlorophyll biomass (Brewin et al., 2010). The application of the model proved to be successful, as shown by low mean absolute error between data and model fit. However, regional values obtained for the model parameters had some effect on the relative distribution of size classes as a function of chlorophyll-a, compared with the results according to the original model. The regional parameterisation yielded a dominance of micro-plankton contribution for chlorophyll-a concentrations greater than 0.5 mg m− 3, rather than from 1.3 mg m− 3 in the original model. Intracellular chlorophyll-a (Chla) per cell, for each size class, was computed from the cell enumeration results (microscope counts and flow cytometry) and the chlorophyll-a concentration for that size class given by the model. The median intracellular chlorophyll-a values computed were 0.004, 0.224 and 26.78 pg Chla cell− 1 for pico-, nano-, and micro-plankton respectively. This is generally consistent with the literature, thereby providing an indirect validation of the method based on pigments to assign size classes. Using a satellite-derived composite image of chlorophyll-a for the study area, a map of cell abundance was generated based on the computed intracellular chlorophyll-a for each size-class, thus extending the remote-sensing method for mapping size classes of phytoplankton from chlorophyll-a concentration to mapping cell numbers in each class. The map reveals the ubiquitous presence of pico-plankton, and shows that all size classes are more abundant in more productive areas

    Does physical activity moderate the association between shorter leukocyte telomere length and incident coronary heart disease? Data from 54,180 UK Biobank participants

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData availability: Data used in this project are available via application to UK Biobank.Telomere shortening is a biological aging hallmark. The effect of short telomere length may be targeted by increased physical activity to reduce the risk of multiple aging-related diseases, including coronary heart disease (CHD). The objective was to assess the moderation effect of accelerometer-based physical activity (aPA) on the association between shorter leukocyte telomere length (LTL) relatively in the population sample and incident CHD. Data were from the UK Biobank participants with well-calibrated accelerometer data for at least 6.5 days (n = 54,180). Relative mean LTL at baseline (5-6 years prior to aPA assessment) was measured in T/S ratio, using a multiplex quantitative polymerase chain reaction (qPCR) technology, by comparing the amount of the telomere amplification product (T) to that of a single-copy gene (S). aPA measures included total number of events (at least 10-s continued physical activity > 32 milligravities [mg]), total volume, mean duration, mean intensity, and peak intensity of all events. LTL, aPA measures, and their interactions were associated with incident CHD (mean follow-up 6.8 years) using Cox proportional hazards models adjusting for covariates. Longer LTL (relative to the sample distribution) was associated with reduced incidence of CHD (adjusted hazard ratio [aHR] = 0.94 per standard deviation [SD] increase in LTL, [95% CI, 0.90 to 0.99], P = .010). Incidence of CHD was reduced by higher total volume of aPA (aHR = 0.82 per SD increase in LTL, [95% CI, 0.71 to 0.95], P = .010) but increased by higher total number of events (aHR = 1.11 per SD increase in LTL, [95% CI, 1.02 to 1.21], P = .020) after controlling for other aPA measures and covariates. However, none of the interactions between LTL and aPA measures was statistically significant (P = .171).National Institute of Nursing Research, National Institutes of Healt

    Experience with model-based performance, reliability and adaptability assessment of a complex industrial architecture

    Full text link
    In this paper, we report on our experience with the application of validated models to assess performance, reliability, and adaptability of a complex mission critical system that is being developed to dynamically monitor and control the position of an oil-drilling platform. We present real-time modeling results that show that all tasks are schedulable. We performed stochastic analysis of the distribution of task execution time as a function of the number of system interfaces. We report on the variability of task execution times for the expected system configurations. In addition, we have executed a system library for an important task inside the performance model simulator. We report on the measured algorithm convergence as a function of the number of vessel thrusters. We have also studied the system architecture adaptability by comparing the documented system architecture and the implemented source code. We report on the adaptability findings and the recommendations we were able to provide to the system’s architect. Finally, we have developed models of hardware and software reliability. We report on hardware and software reliability results based on the evaluation of the system architecture

    Paving (through) Amazonia: Neoliberal Urbanism and the Reperipheralization of Roraima

    Get PDF
    This paper examines the neoliberal reshaping of infrastructure provision in Brazil's extreme north since the mid-1990s, when roadway investments resulted in unprecedented regional connectivity. The BR-174 upgrade, the era's most important project, marked a transition from resource-based developmentalism to free-market transnationalism. Primarily concerned with urban competitiveness, the federal government funded the trunk roadway's paving to facilitate manufacturing exports from Manaus. While an effort was made to minimize deforestation, planners sidelined development implications in adjacent Roraima. The state's urban system has thus experienced reperipheralization and intensified primacy. Market-led growth now compounds the inheritance of hierarchical centralism and ongoing governmental neglect. Our study shows a vast territory dependent on primate cities for basic goods and services. Travelling with Roraimans from bypassed towns, we detected long-distance passenger transportation and surface logistics with selective routes. Heterogeneous Roraiman (im)mobilities comprise middle-class tourism and heightened consumerism as well as informal mobility tactics and transnational circulations of precarious labor. The paper exhorts neoliberal urbanism research to look beyond both Euro America's metropoles and their Global South counterparts. Urbanization dynamics in Brazil's extreme north demonstrate that market-disciplined investments to globalize cities produce far-reaching spatial effects. These are felt even by functionally-articulated-yet-marginalized peripheries in ostensibly remote locations

    Effects of olive oil and its minor phenolic constituents on obesity-induced cardiac metabolic changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Olive oil and its minor constituents have been recommended as important dietary therapeutic interventions in preventive medicine. However, a question remains to be addressed: what are the effects of olive oil and its phenolic compounds on obesity-induced cardiac metabolic changes?</p> <p>Methods</p> <p>Male Wistar rats were divided into two groups (<it>n </it>= 24/group): (C) receiving standard-chow; (Ob) receiving hypercaloric-chow. After 21 days C and Ob groups were divided into four subgroups (<it>n </it>= 6/group):(C) standard-chow and saline; (C-Olive)standard-chow and olive-oil (3.0 g/kg.day); (C-Oleuropein)standard-chow and oleuropein (0.023 mg/kg/day); (C-Cafeic) standard-chow and cafeic-acid (2.66 mg/kg/day); (Ob)receiving hypercaloric-chow and saline;(Ob-Olive) hypercaloric-chow and olive-oil;(Ob-Oleuropein) hypercaloric-chow and oleuropein;(Ob-Cafeic) hypercaloric-chow and cafeic-acid. Treatments were given twice a week during 21 days.</p> <p>Results</p> <p>After 42 days, obesity was evidenced in Ob rats from enhanced body-weight, surface-area, and body-mass-index. Energy-expenditure, oxygen consumption(VO<sub>2</sub>) and fat-oxidation were lower in Ob-group than in C. Despite no morphometric changes, Ob-Olive, Ob-Oleuropein and Ob-Cafeic groups had higher VO<sub>2</sub>, fat-oxidation, myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and lower respiratory-quotient than Ob. Citrate-synthase was highest in Ob-Olive group. Myocardial lipid-hydroperoxide(LH) and antioxidant enzymes were unaffected by olive-oil and its compounds in obesity condition, whereas LH was lower and total-antioxidant-substances were higher in C-Olive and C-Oleuropein than in C.</p> <p>Conclusions</p> <p>The present study demonstrated for the first time that olive-oil, oleuropein and cafeic-acid enhanced fat-oxidation and optimized cardiac energy metabolism in obesity conditions. Olive oil and its phenolic compounds improved myocardial oxidative stress in standard-fed conditions.</p

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3–5, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink
    corecore