140 research outputs found
Quantum corrections and black hole spectroscopy
In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully
reproduced in the tunneling picture. As a result, the derived entropy spectrum
of black hole in different gravity (including Einstein's gravity,
Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly
spaced, sharing the same forms as , where physical process is only
confined in the semiclassical framework. However, the real physical picture
should go beyond the semiclassical approximation. In this case, the physical
quantities would undergo higher-order quantum corrections, whose effect on
different gravity shares in different forms. Motivated by these facts, in this
paper we aim to observe how quantum corrections affect black hole spectroscopy
in different gravity. The result shows that, in the presence of higher-order
quantum corrections, black hole spectroscopy in different gravity still shares
the same form as , further confirming the entropy quantum is universal
in the sense that it is not only independent of black hole parameters, but also
independent of higher-order quantum corrections. This is a desiring result for
the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE
Measurement challenge : protocol for international case–control comparison of mammographic measures that predict breast cancer risk
Introduction: For women of the same age and body mass index, increased mammographic density is one of the strongest predictors of breast cancer risk. There are multiple methods of measuring mammographic density and other features in a mammogram that could potentially be used in a screening setting to identify and target women at high risk of developing breast cancer. However, it is unclear which measurement method provides the strongest predictor of breast cancer risk.
Methods and analysis: The measurement challenge has been established as an international resource to offer a common set of anonymised mammogram images for measurement and analysis. To date, full field digital mammogram images and core data from 1650 cases and 1929 controls from five countries have been collated. The measurement challenge is an ongoing collaboration and we are continuing to expand the resource to include additional image sets across different populations (from contributors) and to compare additional measurement methods (by challengers). The intended use of the measurement challenge resource is for refinement and validation of new and existing mammographic measurement methods. The measurement challenge resource provides a standardised dataset of mammographic images and core data that enables investigators to directly compare methods of measuring mammographic density or other mammographic features in case/control sets of both raw and processed images, for the purposes of the comparing their predictions of breast cancer risk.
Ethics and dissemination: Challengers and contributors are required to enter a Research Collaboration Agreement with the University of Melbourne prior to participation in the measurement challenge. The Challenge database of collated data and images are stored in a secure data repository at the University of Melbourne. Ethics approval for the measurement challenge is held at University of Melbourne (HREC ID 0931343.3)
The Survey of H5N1 Flu Virus in Wild Birds in 14 Provinces of China from 2004 to 2007
The highly pathogenic H5N1 avian influenza emerged in the year 1996 in Asia, and has spread to Europe and Africa recently. At present, effective monitoring and data analysis of H5N1 are not sufficient in Chinese mainland.)) were obviously higher than those in other 13 provinces. The results of sequence analysis indicated that the 17 strains isolated from wild birds were distributed in five clades (2.3.1, 2.2, 2.5, 6, and 7), which suggested that genetic diversity existed among H5N1 viruses isolated from wild birds. The five isolates from Qinghai came from one clade (2.2) and had a short evolutionary distance with the isolates obtained from Qinghai in the year 2005.We have measured the prevalence of H5N1 virus in 56 species of wild birds in 14 provinces of China. Continuous monitoring in the field should be carried out to know whether H5N1 virus can be maintained by wild birds
Beam-Target Double Spin Asymmetry A_LT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He-3 Target at 1.4<Q^2<2.7 GeV^2
We report the first measurement of the double-spin asymmetry for
charged pion electroproduction in semi\nobreakdash-inclusive
deep\nobreakdash-inelastic electron scattering on a transversely polarized
He target. The kinematics focused on the valence quark region,
with . The corresponding neutron
asymmetries were extracted from the measured He asymmetries and
proton over He cross section ratios using the effective polarization
approximation. These new data probe the transverse momentum dependent parton
distribution function and therefore provide access to quark
spin-orbit correlations. Our results indicate a positive azimuthal asymmetry
for production on He and the neutron, while our
asymmetries are consistent with zero.Comment: 6 pages, 2 figures, 1 tables, published in PR
Single Spin Asymmetries in Charged Pion Production from Semi-Inclusive Deep Inelastic Scattering on a Transversely Polarized He Target
We report the first measurement of target single spin asymmetries in the
semi-inclusive reaction on a transversely polarized
target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron
beam, covers a range of 0.14 0.34 with 1.3 2.7 GeV. The
Collins and Sivers moments were extracted from the azimuthal angular dependence
of the measured asymmetries. The extracted Collins moments for He
are consistent with zero, except for the moment at , which
deviates from zero by 2.3. While the Sivers moments are
consistent with zero, the Sivers moments favor negative values. The
neutron results were extracted using the nucleon effective polarization and the
measured cross section ratio of proton to He, and are largely consistent
with the predictions of phenomenological fits and quark model calculations.Comment: 6 pages, 2 figures, 2 tables, published in PR
Gene Expression Profiling in Gastric Mucosa from Helicobacter pylori-Infected and Uninfected Patients Undergoing Chronic Superficial Gastritis
Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray using in vitro culture cells and in vivo gastric biopsies from patients of the Chronic Abdominal Complaint. To further explore the effects of H. pylori infection on host gene expression, we have collected the gastric antral mucosa samples from 6 untreated patients with gastroscopic and pathologic confirmation of chronic superficial gastritis. Among them three patients were infected by H. pylori and the other three patients were not. These samples were analyzed by a microarray chip which contains 14,112 cloned cDNAs, and microarray data were analyzed via BRB ArrayTools software and Ingenuity Pathways Analysis (IPA) website. The results showed 34 genes of 38 differentially expressed genes regulated by H. pylori infection had been annotated. The annotated genes were involved in protein metabolism, inflammatory and immunological reaction, signal transduction, gene transcription, trace element metabolism, and so on. The 82% of these genes (28/34) were categorized in three molecular interaction networks involved in gene expression, cancer progress, antigen presentation and inflammatory response. The expression data of the array hybridization was confirmed by quantitative real-time PCR assays. Taken together, these data indicated that H. pylori infection could alter cellular gene expression processes, escape host defense mechanism, increase inflammatory and immune responses, activate NF-κB and Wnt/β-catenin signaling pathway, disturb metal ion homeostasis, and induce carcinogenesis. All of these might help to explain H. pylori pathogenic mechanism and the gastroduodenal pathogenesis induced by H. pylori infection
Data-analysis strategies for image-based cell profiling
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe
- …