58 research outputs found

    Signal-induced Brd4 release from chromatin is essential for its role transition from chromatin targeting to transcriptional regulation

    Get PDF
    Bromodomain-containing protein Brd4 is shown to persistently associate with chromosomes during mitosis for transmitting epigenetic memory across cell divisions. During interphase, Brd4 also plays a key role in regulating the transcription of signal-inducible genes by recruiting positive transcription elongation factor b (P-TEFb) to promoters. How the chromatin-bound Brd4 transits into a transcriptional regulation mode in response to stimulation, however, is largely unknown. Here, by analyzing the dynamics of Brd4 during ultraviolet or hexamethylene bisacetamide treatment, we show that the signal-induced release of chromatin-bound Brd4 is essential for its functional transition. In untreated cells, almost all Brd4 is observed in association with interphase chromatin. Upon treatment, Brd4 is released from chromatin, mostly due to signal-triggered deacetylation of nucleosomal histone H4 at acetylated-lysine 5/8 (H4K5ac/K8ac). Through selective association with the transcriptional active form of P-TEFb that has been liberated from the inactive multi-subunit complex in response to treatment, the released Brd4 mediates the recruitment of this active P-TEFb to promoter, which enhances transcription at the stage of elongation. Thus, through signal-induced release from chromatin and selective association with the active form of P-TEFb, the chromatin-bound Brd4 switches its role to mediate the recruitment of P-TEFb for regulating the transcriptional elongation of signal-inducible genes.National Natural Science Foundation of China[30930046, 30670408, 81070307]; Natural Science Foundation of Fujian[C0210005, 2010J01231]; Science Planning Program of Fujian Province[2009J1010, 2010J1008]; National Foundation for fostering talents of basic science[J1030626

    Comparative analysis of bile metabolic profile in patients with biliary obstruction complicated by Clonorchis sinensis infection

    Get PDF
    BackgroundClonorchiasis is an important foodborne parasitic disease. However, eggs of Clonorchis sinensis (C. sinensis) cannot be detected in feces during biliary obstruction. Moreover, many diseases can cause biliary obstruction, such as gallstones, adenocarcinoma, cholangiocarcinoma and Ascaris lumbricoides infection. Therefore, it is of great significance to distinguish between patients of biliary obstruction and biliary obstruction with C. sinensis infection.MethodsA total of 48 biliary obstruction patients were enrolled, including 23 infected with C. sinensis (C. sinensis) (OB+C.s) and 25 non-infected subjects (OB). The bile samples were collected by endoscopic retrograde cholangiopancreatography and analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Additionally, multivariate statistical analysis methods were employed to identify differential metabolites. Next, bile amino acid levels were determined by targeted metabolomics analysis.ResultA total of 146 and 132 significant metabolites were identified in electrospray ionization (ESI)+ and ESI− modes, respectively. The levels of amino acids (asparagine, glutamate, ornithine) and polyamines (spermidine and spermine) were significantly changed. Targeted analysis showed that the levels of amino acids (such as L-arginine, L-glutamine, L-lysine, L-propionic, and L-tyrosine) were lower in OB+C.s patients compared to those in OB patients. Marked metabolic pathways were involved in “Glutathione metabolism”, “Caffeine metabolism”, “Alanine, aspartate and glutamate metabolism”, “Arginine and proline metabolism”, “Purine metabolism”, “Beta-Alanine metabolism”, and “D-glutamine and D-glutamate metabolism”.ConclusionThese results show that there were significant differences between OB+C.s and OB patients, especially in amino acids. The metabolic signature and perturbations in metabolic pathways may help to better distinguish OB+C.s and OB patients

    Serum metabolic profiling of rats infected with Clonorchis sinensis using LC-MS/MS method

    Get PDF
    BackgroundClonorchiasis is an important foodborne parasitic disease. The omics-based-techniques could illuminate parasite biology and further make innovations in the research for parasitic diseases. However, knowledge about the serum metabolic profiles and related metabolic pathways in clonorchiasis is very limited.MethodsA untargeted ultra-high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) was used to profile the serum metabolites of rats at both 4 and 8 weeks post infection (wpi) with Clonorchis sinensis (C. sinensis). Additionally, multivariate statistical analysis methods were employed to identify differential metabolites. Next, serum amino acids and phosphatidylcholines (PCs) levels were determined by targeted metabolomics analysis.ResultA total of 10530 and 6560 ions were identified in ESI+ and ESI− modes. The levels of phosphatidylcholines, glycerophosphocholine and choline were significantly changed, with the shift in lipid metabolism. Significant changes were also observed in amino acids (isoleucine, valine, leucine, threonine, glutamate and glutamine). Targeted analysis showed that BCAAs (isoleucine, valine, leucine) levels significantly increased at 4 wpi and decreased at 8 wpi; threonine was increased at 8 wpi, whereas glutamate and glutamine showed a decreasing trend at 8 wpi. Additionally, the level of 17 PCs were significantly changed in infected rats. Marked metabolic pathways were involved in clonorchiasis, including glycerophospholipid metabolism, alanine, aspartate and glutamate metabolism, histidine metabolism and pyrimidine metabolism.ConclusionThese results show that C. sinensis infection can cause significant changes in the rat serum metabolism, especially in amino acids and lipids. The metabolic signature together with perturbations in metabolic pathways could provide more in depth understanding of clonorchiasis and further make potential therapeutic interventions

    Phase change slurries for cooling and storage: an overview of research trends and gaps

    Get PDF
    Phase change slurries (PCSs) have great potential as both a heat transfer fluid and an energy storage medium for cooling processes, cold energy storage, and cold energy transportation due to desirable thermophysical properties. One of the major benefits of PCSs compared to pure phase change materials is their fluidity, thus making them cooled or heated by a heat exchanger, pumped through pipes, discharged, and stored directly in a thermal energy storage tank. The use of encapsulated phase change slurries and gas hydrate slurry has thus attracted considerable interest as reflected in the literature with a rising number of publications and institutions involved in the area. The use of bibliometric techniques has found a recent interest in the literature to define the progress of different scientific topics and inspire researchers to identify novelties. In this paper, bibliometric analysis and a detailed systematic review are carried out to show the state-of-the-art development of PCSs for cooling applications. Research gaps and hotspots are identified to help define future perspectives on this topic

    Profiles of biliary microbiota in biliary obstruction patients with Clonorchis sinensis infection

    Get PDF
    BackgroundClonorchis sinensis (C. sinensis) is a epidemiologically significant food-borne parasite, causing several hepatobiliary diseases. Biliary microbiota community structure might be influenced by infection with pathogens. However, the biliary microbiome of biliary obstruction patients infected with C. sinensis is still an unexplored aspect.MethodsA total of 50 biliary obstruction patients were enrolled, including 24 infected with C. sinensis and 26 non-infected subjects. The bile samples were collected by Endoscopic Retrograde Cholangiopancretography. Biliary microbiota alteration was analyzed through high-throughput 16S ribosomal RNA (rRNA) gene sequencing.ResultsOur findings revealed that there was significant increase in both richness and diversity, as well as changes in the taxonomic composition of the biliary microbiota of C. sinensis infected patients. At the phylum level, C. sinensis infection induced Proteobacteria increased and Firmicutes reduced. At the genus level, the relative abundance of Pseudomonas and Staphylococcus increased significantly, while Enterococcus decreased prominently in infected groups (P < 0.05). The PICRUSt analysis further showed remarkably different metabolic pathways between the two groups.ConclusionC. sinensis infection could modify the biliary microbiota, increasing the abundance and changing the phylogenetic composition of bacterial in biliary obstruction patients. This study may help deepen the understanding of the host-biliary microbiota interplay with C. sinensis infection on the background of biliary obstruction and provide new insights into understanding the pathogenesis of clonorchiasis

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Tacit Knowledge on Maps: A Discussion Centered on the Location of the Wailuo on the Zhongguo gu hang hai tu in the Beinecke Library

    No full text
    The Beinecke Library of Yale University owns an ancient Chinese sea atlas, Zhongguo gu hang hai tu, which has attracted considerable scholarly interest over the last three decades. In 2018, Wing-Sheung Cheng published his research monograph focusing on this atlas. However, his identification of certain geographical features is problematic; in particular, the Wailuo (外罗), depicted several times in the pages of the Zhongguo gu hang hai tu, is identified as either Robert Island or Money Island in the Paracel Islands. Based on comparison with other sources, which invariably place the Wailuo near the coast of modern Vietnam (Cù Lao Ré), it is concluded that Cheng misread the cartographic representations of the atlas. In order to better elucidate the causes of this misreading, this paper introduces the epistemological concept of "tacit knowledge," coined by the philosopher Michael Polanyi (1891-1976), into the study on the history of cartography. Tacit knowledge as a notion has developed different meanings since Polanyi, and is construed as the opposite of explicit knowledge. Matthew H. Edney has championed the investigation of the mapping process rather than simply the mapping practice in the history of cartography. It is argued that the mapping process of ancient nautical charts involved tacit knowledge, which was not fully inscribed into or depicted on the charts. Acknowledging and revitalizing such tacit knowledge is of paramount importance to the study of the history of cartography. Because modern and scientific cartography has transcended and obfuscated the mapping process of ancient sea charts, tacit knowledge is sometimes ignored or misinterpreted, which eventually results in ancient maps and charts becoming seemingly unintelligible. Therefore, the underlying cause for Cheng's misreading of the Wailuo can be attributed to his over-reliance on the explicit knowledge drawn on the pages of the atlas, and ignorance of the rich tacit knowledge that was passed down through generations of Chinese seafarers, until it was overtaken by modern sea charts. This case study also echoes recent debates regarding the progress and setbacks in the history of cartographic studies in China. It shows that theoretical exploration is capable of facilitating the improvement and long-term viability of the history of cartography in the Chinese language world
    corecore