9,718 research outputs found

    Y(2175): Distinguish Hybrid State from Higher Quarkonium

    Get PDF
    The possibility of Y(2175) as a 23D12{^3D_1} ssˉs\bar{s} meson is studied. We study the decay of 23D12{^3D_1} ssˉs\bar{s} from both the 3P0^3P_0 model and the flux tube model, and the results are similar in the two models. We show that the decay patterns of 11^{--} strangeonium hybrid and 23D12{^3D_1} ssˉs\bar{s} are very different. The experimental search of the decay modes KKKK, KKK^{*}K^{*}, K(1460)KK(1460)K, h1(1380)ηh_1(1380)\eta is suggested to distinguish the two pictures. Measuring the KKK^{*}K^{*} partial width ratios is crucial to discriminate the 23D12{^3D_1} from the 33S13{^3S_1} ssˉs\bar{s} assignment.Comment: 13 pages, 8 figure

    Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics

    Full text link
    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.Comment: 4 pages, 3 figure

    The η(2225)\eta(2225) observed by the BES Collaboration

    Full text link
    In the framework of the 3P0^3P_0 meson decay model, the strong decays of the 31S03 ^1S_0 and 41S04 ^1S_0 ssˉs\bar{s} states are investigated. It is found that in the presence of the initial state mass being 2.24 GeV, the total widths of the 31S03 ^1S_0 and 41S04 ^1S_0 ssˉs\bar{s} states are about 438 MeV and 125 MeV, respectively. Also, when the initial state mass varies from 2220 to 2400 MeV, the total width of the 41S04 ^1S_0 ssˉs\bar{s} state varies from about 100 to 132 MeV, while the total width of the 31S03 ^1S_0 ssˉs\bar{s} state varies from about 400 to 594 MeV. A comparison of the predicted widths and the experimental result of (0.19±0.030.06+0.04)(0.19\pm 0.03^{+0.04}_{-0.06}) GeV, the width of the η(2225)\eta(2225) with a mass of (2.240.020.02+0.03+0.03)(2.24^{+0.03+0.03}_{-0.02-0.02}) GeV recently observed by the BES Collaboration in the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi\to\gamma\phi\phi\to\gamma K^+K^-K^0_SK^0_L, suggests that it would be very difficult to identify the η(2225)\eta(2225) as the 31S03 ^1S_0 ssˉs\bar{s} state, and the η(2225)\eta(2225) seams a good candidate for the 41S04 ^1S_0 ssˉs\bar{s} state.Comment: 14 pages, 3 figures, typos corrected, Accepted by Physical Review

    Solving the stationary Liouville equation via a boundary element method

    Full text link
    Intensity distributions of linear wave fields are, in the high frequency limit, often approximated in terms of flow or transport equations in phase space. Common techniques for solving the flow equations for both time dependent and stationary problems are ray tracing or level set methods. In the context of predicting the vibro-acoustic response of complex engineering structures, reduced ray tracing methods such as Statistical Energy Analysis or variants thereof have found widespread applications. Starting directly from the stationary Liouville equation, we develop a boundary element method for solving the transport equations for complex multi-component structures. The method, which is an improved version of the Dynamical Energy Analysis technique introduced recently by the authors, interpolates between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. We demonstrate that the method can be used to efficiently deal with complex large scale problems giving good approximations of the energy distribution when compared to exact solutions of the underlying wave equation
    corecore