4 research outputs found

    Model Based Optimization and Definition in an Integrated Engineering Design Approach: A Case Study

    Get PDF
    A Thesis Presented to the Faculty of the College of Business and Technology Morehead State University in Partial Fulfillment of the Requirements for the Degree Master of Science by Caiwu Ding on June 24, 2016

    Design and control of next-generation uavs for effectively interacting with environments

    Get PDF
    In this dissertation, the design and control of a novel multirotor for aerial manipulation is studied, with the aim of endowing the aerial vehicle with more degrees of freedom of motion and stability when interacting with the environments. Firstly, it presents an energy-efficient adaptive robust tracking control method for a class of fully actuated, thrust vectoring unmanned aerial vehicles (UAVs) with parametric uncertainties including unknown moment of inertia, mass and center of mass, which would occur in aerial maneuvering and manipulation. The effectiveness of this method is demonstrated through simulation. Secondly, a humanoid robot arm is adopted to serve as a 6-degree-of-freedom (DOF) automated flight testing platform for emulating the free flight environment of UAVs while ensuring safety. Another novel multirotor in a tilt-rotor architecture is studied and tested for coping with parametric uncertainties in aerial maneuvering and manipulation. Two pairs of rotors are mounted on two independently-controlled tilting arms placed at two sides of the vehicle in a H configuration to enhance its maneuverability and stability through an adaptive robust control method. In addition, an impedance control algorithm is deployed in the out loop that modifies the trajectory to achieve a compliant behavior in the end-effector space for aerial drilling and screwing tasks

    Aerial Manipulation Using a Novel Unmanned Aerial Vehicle Cyber-Physical System

    Full text link
    Unmanned Aerial Vehicles(UAVs) are attaining more and more maneuverability and sensory ability as a promising teleoperation platform for intelligent interaction with the environments. This work presents a novel 5-degree-of-freedom (DoF) unmanned aerial vehicle (UAV) cyber-physical system for aerial manipulation. This UAV's body is capable of exerting powerful propulsion force in the longitudinal direction, decoupling the translational dynamics and the rotational dynamics on the longitudinal plane. A high-level impedance control law is proposed to drive the vehicle for trajectory tracking and interaction with the environments. In addition, a vision-based real-time target identification and tracking method integrating a YOLO v3 real-time object detector with feature tracking, and morphological operations is proposed to be implemented onboard the vehicle with support of model compression techniques to eliminate latency caused by video wireless transmission and heavy computation burden on traditional teleoperation platforms.Comment: Newsletter of IEEE Technical Committee on Cyber-Physical System
    corecore