44 research outputs found

    Concordance of freshwater and terrestrial biodiversity

    Get PDF
    Efforts to set global conservation priorities have largely ignored freshwater diversity, thereby excluding some of the world\u27s most speciose, threatened, and valuable taxa. Using a new global map of freshwater ecoregions and distribution data for about 13,300 fish species, we identify regions of exceptional freshwater biodiversity and assess their overlap with regions of equivalent terrestrial importance. Overlap is greatest in the tropics and is higher than expected by chance. These high-congruence areas offer opportunities for integrated conservation efforts, which could be of particular value when economic conditions force conservation organizations to narrow their focus. Areas of low overlap-missed by current terrestrially based priority schemes-merit independent freshwater conservation efforts. These results provide new information to conservation investors setting priorities at global or regional scales and argue for a potential reallocation of future resources to achieve representation of overlooked biomes. © 2010 Wiley Periodicals, Inc

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framewor

    Get PDF
    58 pages, 5 figures, 3 tables- The World Economic Forum now ranks biodiversity loss as a top-five risk to the global economy, and the draft post-2020 Global Biodiversity Framework proposes an expansion of conservation areas to 30% of the earth’s surface by 2030 (hereafter the “30% target”), using protected areas (PAs) and other effective area-based conservation measures (OECMs). - Two immediate concerns are how much a 30% target might cost and whether it will cause economic losses to the agriculture, forestry and fisheries sectors. - Conservation areas also generate economic benefits (e.g. revenue from nature tourism and ecosystem services), making PAs/Nature an economic sector in their own right. - If some economic sectors benefit but others experience a loss, high-level policy makers need to know the net impact on the wider economy, as well as on individual sectors. [...]A. Waldron, K. Nakamura, J. Sze, T. Vilela, A. Escobedo, P. Negret Torres, R. Button, K. Swinnerton, A. Toledo, P. Madgwick, N. Mukherjee were supported by National Geographic and the Resources Legacy Fund. V. Christensen was supported by NSERC Discovery Grant RGPIN-2019-04901. M. Coll and J. Steenbeek were supported by EU Horizon 2020 research and innovation programme under grant agreement No 817578 (TRIATLAS). D. Leclere was supported by TradeHub UKRI CGRF project. R. Heneghan was supported by Spanish Ministry of Science, Innovation and Universities, Acciones de Programacion Conjunta Internacional (PCIN-2017-115). M. di Marco was supported by MIUR Rita Levi Montalcini programme. A. Fernandez-Llamazares was supported by Academy of Finland (grant nr. 311176). S. Fujimori and T. Hawegawa were supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan and the Sumitomo Foundation. V. Heikinheimo was supported by Kone Foundation, Social Media for Conservation project. K. Scherrer was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 682602. U. Rashid Sumaila acknowledges the OceanCanada Partnership, which funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). T. Toivonen was supported by Osk. Huttunen Foundation & Clare Hall college, Cambridge. W. Wu was supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan. Z. Yuchen was supported by a Ministry of Education of Singapore Research Scholarship Block (RSB) Research FellowshipPeer reviewe

    Tigerland : and other unintended destinations

    No full text
    In every adventure is joined by spirited scientists, activists, and volunteers who share his mission from a biologist who devoted his life to great mammals of his native africa279 p. ; 23 cm
    corecore