23 research outputs found

    Holocene drainage systems of the English Fenland : roddons and their environmental significance

    Get PDF
    The roddons of the English Fenlands are fossilised silt and sand-filled tidal creek systems of mid- to late-Holocene age, incised into contemporaneous clay deposits. However, anthropogenic change (drainage and agriculture) has caused the former channels to become positive topographical features. Three stratigraphically discrete generations of roddon have been discriminated. They all show well-developed dendritic meander patterns, but there is little or no evidence of sand/silt infill during meandering; thus, unlike modern tidal creeks and rivers they typically lack laterally stacked point bar deposits, suggesting rapid infill. Major “trunk” roddons are rich in fine sands and there is little change in grain size from roddon mouth to the upper reaches, suggesting highly effective sand transport mechanisms and uniform conditions of deposition. Tributaries are silt-rich, while minor tributaries also have a significant clay component. During infill, active drainage networks appear to have been choked by sediment, converting mudflat/salt-marsh environments into widespread peat-forming freshwater reed swamps

    The anthropology of extraction: critical perspectives on the resource curse

    Get PDF
    Attempts to address the resource curse remain focussed on revenue management, seeking technical solutions to political problems over examinations of relations of power. In this paper, we provide a review of the contribution anthropological research has made over the past decade to understanding the dynamic interplay of social relations, economic interests and struggles over power at stake in the political economy of extraction. In doing so, we show how the constellation of subaltern and elite agency at work within processes of resource extraction is vital in order to confront the complexities, incompatibilities, and inequities in the exploitation of mineral resources

    Genomic analyses in Cornelia de Lange Syndrome and related diagnoses: Novel candidate genes, <scp>genotype–phenotype</scp> correlations and common mechanisms

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (&gt;60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS‐like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or “DTRs”). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype–phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population

    Transcending Sovereignty: Locating Indigenous Peoples in Transboundary Water Law

    Full text link

    The anatomy of a Fenland roddon: sedimentation and environmental change in a lowland Holocene tidal creek environment

    Get PDF
    A Holocene sand/silt-filled tidal creek, locally called a roddon, excavated at Must Farm near Whittlesey, Cambridgeshire, within the English Fenland, preserves an unprecedented record of Fenland tidal creek evolution. The tidal creek was formed sometime between c. 4735 BP and c. 3645 BP. Its infill comprised centimetre-scale, laminated, tidal sand-mud couplets, numbering some 600 in total, with microfossils that show marine and coastal derivation of the sediment. The nature of the infill suggests rapid sedimentation that choked the creek system, perhaps in as little as a few years. At least three successive generations of roddons are present in the Fenland, suggesting at least three distinct episodes of tidal creek formation. The Must Farm roddon belongs to the first generation. A later, mud-filled channel was subsequently incised into the roddon, perhaps initiated by a marine surge. It quickly transformed into a slowly flowing river, as suggested by molluscs, ostracods and diatoms. Infill of this late-stage channel was slow, perhaps over about 1200 years between c. 3250 and 2050 BP (c. 1300–100 cal BC), as shown by archaeological finds. The mud-filled channel superficially resembles late-stage, organic-rich channel infills visible on aerial photographs, but is wider and deeper and might have been part of a more substantial long-lived ‘river’, perhaps a tributary of the proto-Nene

    DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    No full text
    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response

    The anatomy of a Fenland roddon: sedimentation and environmental change in a lowland Holocene tidal creek environment

    No full text
    <p>A Holocene sand/silt-filled tidal creek, locally called a roddon, excavated at Must Farm near Whittlesey, Cambridgeshire, within the English Fenland, preserves an unprecedented record of Fenland tidal creek evolution. The tidal creek was formed sometime between <em>c</em>. 4735 BP and <em>c</em>. 3645 BP. Its infill comprised centimetre-scale, laminated, tidal sand-mud couplets, numbering some 600 in total, with microfossils that show marine and coastal derivation of the sediment. The nature of the infill suggests rapid sedimentation that choked the creek system, perhaps in as little as a few years. At least three successive generations of roddons are present in the Fenland, suggesting at least three distinct episodes of tidal creek formation. The Must Farm roddon belongs to the first generation. A later, mud-filled channel was subsequently incised into the roddon, perhaps initiated by a marine surge. It quickly transformed into a slowly flowing river, as suggested by molluscs, ostracods and diatoms. Infill of this late-stage channel was slow, perhaps over about 1200 years between <em>c</em>. 3250 and 2050 BP (<em>c</em>. 1300–100 cal BC), as shown by archaeological finds. The mud-filled channel superficially resembles late-stage, organic-rich channel infills visible on aerial photographs, but is wider and deeper and might have been part of a more substantial long-lived ‘river’, perhaps a tributary of the proto-Nene. </p
    corecore