9 research outputs found

    Novel Surface Engineering of Carrier Particles for Dry Powder Inhalation Formulations

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Preparation, characterization and antimicrobial assessment of selected ciprofloxacin salts

    Get PDF
    The formation of salts is considered a simple strategy to modify the physicochemical properties of active pharmaceutical ingredients. In this study, seven novel binary and ternary organic salts of ciprofloxacin (CP) were prepared with benzoic acid (BA), acetylsalicylic acid (ASA), p-coumaric acid (PCMA) and p-aminosalicylic acid (PASA). They were characterized by spectroscopic techniques and differential scanning calorimetry. Solubility and partition coefficients values were also measured. Evaluation of the antimicrobial activity of the organic salts against Staphylococcus aureus and Staphylococcus epidermidis revealed that most of the new salts had higher antimicrobial activity than CP-HCl against both strains. The most active compounds against S. epidermidis and S. aureus were CP-PASA and CP-PCMA, resp., which were up to fourteen times more potent than parent CP-HCl. Our findings indicated a strong correlation between the lipophilicity of the formed salts and their antimicrobial activity and showed that an optimum value of lipophilicity (logP = 0.75) seemed to be necessary to maximize the antimicrobial activity. These findings highlighted the improved physical, thermal and antimicrobial properties of the new salts of CP that can aid in providing higher bioavailability than CP-HCl

    Studies on the interaction between ciprofloxacin hydrochloride and diclofenac sodium

    Get PDF
    Purpose: To study the interaction between ciprofloxacin hydrochloride (Cipro) and diclofenac sodium (DS) in the presence and absence of metal ions.Methods: Complexes were prepared in the aqueous phase at different molar ratios (r) of Cipro:DS (ranged from 0.2 – 2.0). The complexes were characterized by Fourier transform-infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and high pressure liquid chromatography (HPLC). Their properties, i.e., solubility, dissolution and partition coefficient (log P), were studied along with their permeability across Caco-2 cells. Furthermore, the antimicrobial activity of Cipro and its complexes was determined using standard broth dilution method and expressed as minimum inhibitory concentration (MIC).Results: Cipro formed an ion pair with DS. The product was confirmed to be a combination of the two drugs, DS and Cipro, but in a ratio that is dependent on the added amounts of each component (r = 1:1 or 1:2). The 1:1 product was more lipophilic than the individual components leading to a lower aqueous solubility and a higher octanol/water partition coefficient log P (6.7 vs. 0.77). The presence of DS within the dissolution medium appeared to modify the dissolution of Cipro depending on the concentration. Moreover, ternary complexes involving Cipro, DS and metal ions (iron and/or calcium) exhibited improved antimicrobial effect (MIC, 0.016 μg/ml compared to 0.258 μg/ml for Cipro). Caco-2 cell permeation data indicate that the presence of DS significantly improved the apparent permeability coefficient (Papp) of Cipro (20.6 × 10-6 cm/s) which was three times higher than that of free Cipro (p < 0.05). DS also appeared to counteract the well-known negative effect of metal ions on the bioavailability of Cipro.Conclusion: There is a clinically relevant interaction between DS and Cipro at the absorption level as a result of ion pair formation, which might even counteract the negative effect of metals on the absorption of Cipro. These findings should aid the design of new Cipro ion pairs that provide higher bioavailability than free Cipro.Keywords: Ciprofloxacin, Diclofenac, Interaction, Ion pair, Permeability coefficient, Bioavailability, Absorptio

    Pancreatic lipase inhibitory activity of selected pharmaceutical agents

    Get PDF
    Twenty-five structurally diverse compounds have been tested in vitro for their pancreatic lipase (PL) inhibitory activity. Despite the diversity of tested compounds, the relationship comprising structural attributes of the compounds could be established to correlate with the observed inhibitory activity. Compounds that exerted inhibitory action through surface activity were of different profile from the rest of compounds. When co-incubated with orlistat (OsT), important synergistic effects for some compounds (orphenadrine, gliclazide, cefuroxime and sulfacetamide) were revealed, while antagonistic effects were demonstrated for others (camphor sulfonic acid and dinitro salicylic acid). Docking studies for the most active molecules were performed and molecular interaction forces with the PL active site were identified. The results suggested co-binding of OsT along with the other inhibitor in the binding site in cases of synergistic effect but not in the case of antagonistic effect. These results were additionally supported by affinity capillary electrophoresis. In conclusion, synergistic lipase inhibitory activity between OsT and some other pharmaceutical compounds was demonstrated for the first time, which might help improve the pharmacological effect of OsT

    Preparation, characterization and antimicrobial assessment of selected ciprofloxacin salts

    No full text
    The formation of salts is considered a simple strategy to modify the physicochemical properties of active pharmaceutical ingredients. In this study, seven novel binary and ternary organic salts of ciprofloxacin (CP) were prepared with benzoic acid (BA), acetylsalicylic acid (ASA), p-coumaric acid (PCMA) and p-aminosalicylic acid (PASA). They were characterized by spectroscopic techniques and differential scanning calorimetry. Solubility and partition coefficients values were also measured. Evaluation of the antimicrobial activity of the organic salts against Staphylococcus aureus and Staphylococcus epidermidis revealed that most of the new salts had higher antimicrobial activity than CPHCl against both strains. The most active compounds against S. epidermidis and S. aureus were CP-PASA and CPPCMA, resp., which were up to fourteen times more potent than parent CP-HCl. Our findings indicated a strong correlation between the lipophilicity of the formed salts and their antimicrobial activity and showed that an optimum value of lipophilicity (log P = 0.75) seemed to be necessary to maximize the antimicrobial activity. These findings highlighted the improved physical, thermal and antimicrobial properties of the new salts of CP that can aid in providing higher bioavailability than CP-HCl
    corecore