3,576 research outputs found

    Guidelines for assessing favourable conservation status of Natura 2000 species and habitat types in Bulgaria

    Get PDF
    This executive summary describes the methodology for assessing the favourable conservation status of N2000 habitats and species on site level in Bulgaria and gives guidelines for its application. The methodology was developed in the frame of the BBI/Matra project 2006/014 “Favourable Conservation Status of Natura 2000 Habitat types and Species in Bulgaria”. The project was generously supported by the Dutch government under the BBI/Matra programme, which is a combination of two international policy programs of the Dutch government. The objectives and financial resources of the BBI/Matra Programme fall within the remit of the Matra Social Transformation Program of the Ministry of Foreign Affairs and under the International Policy Program on Biodiversity of the Ministry of Agriculture, Nature and Food Quality

    Super-resolution imaging of highly curved membrane structures in giant vesicles encapsulating molecular condensates

    Get PDF
    Molecular crowding is an inherent feature of the cell interior. Synthetic cells as provided by giant unilamellar vesicles (GUVs) encapsulating macromolecules (polyethylene-glycol and dextran) represent an excellent mimetic system to study membrane transformations associated with molecular crowding and protein condensation. Similarly to cells, such GUVs loaded with macromolecules exhibit highly curved structures such as internal nanotubes. In addition, upon liquid-liquid phase separation as inside living cells, the membrane of GUVs encapsulating an aqueous two-phase system deforms to form apparent kinks at the contact line of the interface between the two aqueous phases. These structures, nanotubes and kinks, have dimensions below optical resolution and if resolved, can provide information about material properties such as membrane spontaneous curvature and intrinsic contact angle describing the wettability contrast of the encapsulated phases to the membrane. Previous experimental studies were based on conventional optical microscopy which cannot resolve these membrane and wetting properties. Here, we studied these structures with super-resolution microscopy, namely stimulated emission depletion (STED) microscopy, together with microfluidic manipulation. We demonstrate the cylindrical nature of the nanotubes with unprecedented detail based on the superior resolution of STED and automated data analysis. The spontaneous curvature deduced from the nanotube diameters is in excellent agreement with theoretical predictions. Furthermore, we were able to resolve the membrane “kink” structure as a smoothly curved membrane demonstrating the existence of the intrinsic contact angle. We find very good agreement between the directly measured values and the theoretically predicted ones based on the apparent contact angles on the micrometer scale. During different stages of cellular events, biomembranes undergo a variety of shape transformations such as the formation of buds and nanotubes regulated by membrane necks. We demonstrate that these highly curved membrane structures are amenable to STED imaging and show that such studies provide important insights in the membrane properties and interactions underlying cellular activities

    Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    Get PDF
    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene (~3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming

    Characterization of DAG binding to TRPC channels by target-dependent cis–trans isomerization of OptoDArG

    Get PDF
    Azobenzene-based photochromic lipids are valuable probes for the analysis of ion channel–lipid interactions. Rapid photoisomerization of these molecules enables the analysis of lipid gating kinetics and provides information on lipid sensing. Thermal relaxation of the metastable cis conformation to the trans conformation of azobenzene photolipids is rather slow in the dark and may be modified by ligand–protein interactions. Cis photolipid-induced changes in pure lipid membranes as visualized from the morphological response of giant unilamellar vesicles indicated that thermal cis–trans isomerization of both PhoDAG-1 and OptoDArG is essentially slow in the lipid bilayer environment. While the currents activated by cis PhoDAG remained stable upon termination of UV light exposure (dark, UV-OFF), cis OptoDArG-induced TRPC3/6/7 activity displayed a striking isoform-dependent exponential decay. The deactivation kinetics of cis OptoDArG-induced currents in the dark was sensitive to mutations in the L2 lipid coordination site of TRPC channels. We conclude that the binding of cis OptoDArG to TRPC channels promotes transition of cis OptoDArG to the trans conformation. This process is suggested to provide valuable information on DAG–ion channel interactions and may enable highly selective photopharmacological interventions

    “Availability is the poor cousin of marketing and pricing”: qualitative study of stakeholders’ views on policy priorities around tobacco and alcohol availability

    Get PDF
    Background: Reducing alcohol and tobacco availability is one potential way to reduce harm from these unhealthy commodities. This study explores key stakeholders’ views in relation to policy priorities and considerations for both alcohol and tobacco availability. Methods: We conducted semi-structured interviews with 14 stakeholders from alcohol and/or tobacco third sector organizations, government, public health and licensing in Scotland. Interviews explored their views on alcohol/tobacco availability, including its place in the policy landscape and experiences in gaining support for policies. Data were analyzed using thematic analysis. Results: Stakeholders believed that alcohol and tobacco availability have not received as much policy attention as pricing and marketing. Stakeholders highlighted the importance of public support and having sufficient evidence to inform policy. Key considerations for future policies include: drawing on lessons from tobacco control policies to address alcohol availability, considering different aspects of availability (especially online availability), ensuring policies reflect their local context, considering the impact of policies on children, and managing retailers’ involvement in the policy process. Conclusion: This study highlights key considerations for policies to address alcohol and tobacco availability. There is a need for more research to consider retailers’ views and provide greater detail on specific policy suggestions.</p

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte

    Experimental Determination of the Characteristics of a Positron Source Using Channeling

    Full text link
    Numerical simulations and `proof of principle' experiments showed clearly the interest of using crystals as photon generators dedicated to intense positron sources for linear colliders. An experimental investigation, using a 10 GeV secondary electron beam, of the SPS-CERN, impinging on an axially oriented thick tungsten crystal, has been prepared and operated between May and August 2000. After a short recall on the main features of positron sources using channeling in oriented crystals, the experimental set-up is described. A particular emphasis is put on the positron detector made of a drift chamber, partially immersed in a magnetic field. The enhancement in photon and positron production in the aligned crystal have been observed in the energy range 5 to 40 GeV, for the incident electrons, in crystals of 4 and 8 mm as in an hybrid target. The first results concerning this experiment are presented hereafter.Comment: 3 pages, 6 figures, submitted to Linac200

    Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes

    Get PDF
    Constant-pressure molecular-dynamics simulations of phospholipid membranes in the fluid phase reveal strong correlations between equilibrium fluctuations of volume and energy on the nanosecond time-scale. The existence of strong volume-energy correlations was previously deduced indirectly by Heimburg from experiments focusing on the phase transition between the fluid and the ordered gel phases. The correlations, which are reported here for three different membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two temperatures showing that the correlation coefficient increases as the phase transition is approached

    Update of the e^+e^-\to\pi^+\pi^- cross section measured by SND detector in the energy region 400<\sqrt{s}<1000 MeV

    Full text link
    The corrected cross section of the e^+e^-\to\pi^+\pi^- process measured in the SND experiment at the VEPP-2M e^+e^- collider is presented. The update is necessary due to a flaw in the e^+e^-\to\pi^+\pi^- and e^+e^-\to\mu^+\mu^- Monte Carlo events generators used previously in data analysis.Comment: 10 pages,7 figure
    • 

    corecore