569 research outputs found
Super-Resolution in Respiratory Synchronized Positron Emission Tomography
Respiratory motion is a major source of reduced quality in positron emission tomography (PET). In order to minimize its effects, the use of respiratory synchronized acquisitions, leading to gated frames, has been suggested. Such frames, however, are of low signal-to-noise ratio (SNR) as they contain reduced statistics. Super-resolution (SR) techniques make use of the motion in a sequence of images in order to improve their quality. They aim at enhancing a low-resolution image belonging to a sequence of images representing different views of the same scene. In this work, a maximum a posteriori (MAP) super-resolution algorithm has been implemented and applied to respiratory gated PET images for motion compensation. An edge preserving Huber regularization term was used to ensure convergence. Motion fields were recovered using a B-spline based elastic registration algorithm. The performance of the SR algorithm was evaluated through the use of both simulated and clinical datasets by assessing image SNR, as well as the contrast, position and extent of the different lesions. Results were compared to summing the registered synchronized frames on both simulated and clinical datasets. The super-resolution image had higher SNR (by a factor of over 4 on average) and lesion contrast (by a factor of 2) than the single respiratory synchronized frame using the same reconstruction matrix size. In comparison to the motion corrected or the motion free images a similar SNR was obtained, while improvements of up to 20% in the recovered lesion size and contrast were measured. Finally, the recovered lesion locations on the SR images were systematically closer to the true simulated lesion positions. These observations concerning the SNR, lesion contrast and size were confirmed on two clinical datasets included in the study. In conclusion, the use of SR techniques applied to respiratory motion synchronized images lead to motion compensation combined with improved image SNR and contrast, without any increase in the overall acquisition times
Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment.: Multi observation PET image fusion for patient follow-up quantitation and therapy response
International audienceIn positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications
Metabolically active volumes automatic delineation methodologies in PET imaging: review and perspectives
International audiencePET imaging is now considered a gold standard tool in clinical oncology, especially for diagnosis purposes. More recent applications such as therapy follow up or tumor targeting in radiotherapy require a fast, accurate and robust metabolically active tumor volumes on emission images, which cannot be obtained through manual contouring. This clinical need has sprung a large number of methodological developments regarding automatic methods to defined tumor volumes on PET images. This paper reviews most of the methodologies that have been recently proposed and discusses their framework and methodological and/or clinical validation. Perspectives regarding the future work to be done are also suggested
Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation.: 18F-FDG PET and CT tumor delineation in NSCLC
International audienceUNLABELLED: The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. METHODS: Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. RESULTS: All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. CONCLUSION: Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred
Comparison Between 18F-FDG PET Image-Derived Indices for Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer.
International audienceThe goal of this study was to determine the best predictive factor among image-derived parameters extracted from sequential F-FDG PET scans for early tumor response prediction after 2 cycles of neoadjuvant chemotherapy in breast cancer. METHODS: 51 breast cancer patients were included. Responder and nonresponder status was determined by histopathologic examination according to the tumor and node Sataloff scale. PET indices (maximum and mean standardized uptake value [SUV], metabolically active tumor volume, and total lesion glycolysis [TLG]), at baseline and their variation (Δ) after 2 cycles of neoadjuvant chemotherapy were extracted from the PET images. Their predictive value was investigated using Mann-Whitney U tests and receiver-operating-characteristic analysis. Subgroup analysis was also performed by considering estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative, triple-negative, and HER2-positive tumors separately. The impact of partial-volume correction was also investigated using an iterative deconvolution algorithm. RESULTS: There were 24 pathologic nonresponders and 27 responders. None of the baseline PET parameters was correlated with response. After 2 neoadjuvant chemotherapy cycles, the reduction of each parameter was significantly associated with response, the best prediction of response being obtained with ΔTLG (96% sensitivity, 92% specificity, and 94% accuracy), which had a significantly higher area under the curve (0.91 vs. 0.82, P = 0.01) than did ΔSUV (63% sensitivity, 92% specificity, and 77% accuracy). Subgroup analysis confirmed a significantly higher accuracy for ΔTLG than ΔSUV for ER-positive/HER-negative but not for triple-negative and HER2-positive tumors. Partial-volume correction had no impact on the predictive value of any of the PET image-derived parameters despite significant changes in their absolute values. CONCLUSION: Our results suggest that the reduction after 2 neoadjuvant chemotherapy cycles of the metabolically active volume of primary tumor measurements such as ΔTLG predicts histopathologic tumor response with higher accuracy than does ΔSUV measurements, especially for ER-positive/HER2-negative breast cancer. These results should be confirmed in a larger group of patients as they may potentially increase the clinical value and efficiency of F-FDG PET for early prediction of response to neoadjuvant chemotherapy
Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images
Development of robust and accurate fully automated methods for medical image
segmentation is crucial in clinical practice and radiomics studies. In this
work, we contributed an automated approach for Head and Neck (H&N) primary
tumor segmentation in combined positron emission tomography / computed
tomography (PET/CT) images in the context of the MICCAI 2020 Head and Neck
Tumor segmentation challenge (HECKTOR). Our model was designed on the U-Net
architecture with residual layers and supplemented with Squeeze-and-Excitation
Normalization. The described method achieved competitive results in
cross-validation (DSC 0.745, precision 0.760, recall 0.789) performed on
different centers, as well as on the test set (DSC 0.759, precision 0.833,
recall 0.740) that allowed us to win first prize in the HECKTOR challenge among
21 participating teams. The full implementation based on PyTorch and the
trained models are available at https://github.com/iantsen/hecktorComment: 7 pages, 2 figures, 2 table
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.
International audienceAccurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both simulated and acquired datasets led to similar results and conclusions as far as the performance of segmentation algorithms under evaluation is concerned
A Hybrid Monte Carlo and Deep Learning Approach for Fast and Generic Photon Beam Dose Calculation
Dosimetry is an essential tool to provide the best and safest radio-therapies
to a patient. In this field, Monte-Carlo simulations are considered to be the
golden standard for predicting accurately the deposited dose in the body. Such
methods are very time-consuming and simpler dose calculation engines, like dose
kernel approaches, were created for cases where a fast estimation is necessary.
In those approaches, dose distribution maps (or dose kernel) are learned for
simple beams geometry, then, a combination of numerous kernels is used to
simulate more complex beams. However, those methods often lack personalization
and oversimplify the human body, especially for the secondary interactions dose
deposition. In this article, we explore the possibility of learning the dose
kernel using convolutional neural networks to improve their accuracy towards
each different human body. We also highlight the limits of such approaches.Comment: 16 pages, 9 figure
- …
