6 research outputs found

    Stark Broadening of in III Lines in Astrophysical and Laboratory Plasma

    Full text link
    Besides the need of Stark broadening parameters for a number of problems in physics, and plasma technology, in hot star atmospheres the conditions exist where Stark widths are comparable and even larger than the thermal Doppler widths. Using the semiclassical perturbation method we investigated here the influence of collisions with charged particles for In III spectral lines. We determined a number of Stark broadening parameters important for the investigation of plasmas in the atmospheres of A-type stars and white dwarfs. Also, we have compared the obtained results with existing experimental data. The results will be included in the STARK-B database, the Virtual Atomic and Molecular Data Center and the Serbian Virtual Observatory

    Atomic data and electron-impact broadening effect in DO white dwarf atmospheres: Si VI

    Full text link
    Energy levels, electric dipole transition probabilities and oscillator strengths in five times ionized silicon have been calculated in intermediate coupling. The present calculations were carried out with the general purpose atomic-structure program SUPERSTRUCTURE. The relativistic corrections to the non-relativistic Hamiltonian are taken into account through the Breit-Pauli approximation. We have also introduced a semi-empirical correction (TEC) for the calculation of the energy-levels. These atomic data are used to provide semiclassical electron-, proton- and ionized helium- impact line widths and shifts for 15 Si VI muliplet. Calculated results have been used to consider the influence of Stark broadening for DO white dwarf atmospheric conditions.Comment: MNRAS, accepted, 14 page

    Theoretical determination of lifetimes of metastable states in Sc III and Y III

    Full text link
    Lifetimes of the first two metastable states in Sc^{2+} and Y^{2+} are determined using the relativistic coupled-cluster theory. There is a considerable interest in studying the electron correlation effects in these ions as though their electronic configurations are similar to the neutral alkali atoms, their structures are very different from the latter. We have made a comparative study of the correlation trends between the above doubly ionized systems with their corresponding neutral and singly ionized iso-electronic systems. The lifetimes of the excited states of these ions are very important in the field of astrophysics, especially for the study of post-main sequence evolution of the cool giant stars.Comment: 13 pages, 1 figure and 5 table
    corecore