967 research outputs found

    The priority choice in the process of strategy working-out of the social economic micro region development

    Get PDF
    The development of the social economic strategies progress of the micro region namely the choice of priority industries which progress is to be supported by the authorities. The given article provides detailed description of a special authors’ approach how to analyze of perceptivity investment level into different sectors in frames of strategies working-out of the social economic development of the micro region. This approach is based on the creation of a special scale within its formation special attention is paid to the identification of the life cycle stage of the industry under analyses besides the potential development possibility of industries available for resources usage.peer-reviewe

    A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying

    Get PDF
    In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. Β© 2013 Chotoo et al

    Biomarkers in diagnostics of acute kidney injury after the organ-preserving surgery of localized renal cancer

    Get PDF
    Objective: to assess perspectives using biomarkers for early detection of developing acute kidney injury (AKI) among patients during partial nephrectomy under the warm ischemia of the kidney. Materials and methods: data of 100 patients was assessed with a localized renal cancer Π’1N0М0 aged 56,5Β±8,7 years. All the patients underwent partial nephrectomy under warm ischemia of the kidney. The concentration of the following β€œearly markers of AKI” was tested in blood of the patients using the ELISA technique and standard test-systems: cystatin Π‘ (BioVendor, Czech Republic), NGAL (BCMDiagnostics, USA), L-FABP (Hycult Biotechnology, Netherlands). The duration of warm ischemia was also fixed and the rate of diuresis was valued either. The test was carried out 24 hours prior to and 16 hours after the surgical interference. All the patients were diagnosed and classified by the presence or absence of AKI during the early postoperative period according to the generally accepted classification KDIGO. The obtained results were processed with the help of Microsoft Excel software, the statistical reliability of the results was defined on the basis of the use of Wilcoxon non-parametric test. Simultaneously the expert analysis of the clinical data and results of the laboratory research was carried out. Results: the method of the early diagnostics of AKI among patients who underwent partial nephrectomy under the warm ischemia of the kidney was developed. The method is based on the successive identification of the concentration of the early biochemical markers of AKI, the duration of warm ischemia and the rate of diuresis. Conclusions: the use of the developed method allows diagnosing the development of AKI among patients undergoing partial nephretomy under the warm ischemia already in 16 hours after the surgical interference (before the rise in the creatinine level)

    A transcriptomics-based drug repositioning approach to identify drugs with similar activities for the treatment of muscle pathologies in spinal muscular atrophy (SMA) models

    Get PDF
    Β© 2023 The Author(s). Published by Oxford University Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.Peer reviewe

    Mouse Retinal Development: a Dark Horse Model for Systems Biology Research

    Get PDF
    The developing retina is an excellent model to study cellular fate determination and differentiation in the context of a complex tissue. Over the last decade, many basic principles and key genes that underlie these processes have been experimentally identified. In this review, we construct network models to summarize known gene interactions that underlie determination and fundamentally affect differentiation of each retinal cell type. These networks can act as a scaffold to assemble subsequent discoveries. In addition, these summary networks provide a rational segue to systems biology approaches necessary to understand the many events leading to appropriate cellular determination and differentiation in the developing retina and other complex tissues

    Case Report Acanthosis Nigricans Associated with an Adrenocortical Tumor in a Pediatric Patient

    Get PDF
    Malignant acanthosis nigricans (AN) is a rare paraneoplastic syndrome seen primarily in adults with an underlying diagnosis of gastrointestinal adenocarcinoma. Malignant AN is characterized by hyperpigmentation and velvety hyperplasia of the epidermis. This condition is generally not associated with tumors in pediatric populations or in the adrenal gland. We present a case of malignant AN in a pediatric patient with a nonmalignant, functional adrenocortical tumor

    Genetic modifiers ameliorate endocytic and neuromuscular defects in a model of spinal muscular atrophy

    Get PDF
    Β© 2020 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.Background: Understanding the genetic modifiers of neurodegenerative diseases can provide insight into the mechanisms underlying these disorders. Here, we examine the relationship between the motor neuron disease spinal muscular atrophy (SMA), which is caused by reduced levels of the survival of motor neuron (SMN) protein, and the actin-bundling protein Plastin 3 (PLS3). Increased PLS3 levels suppress symptoms in a subset of SMA patients and ameliorate defects in SMA disease models, but the functional connection between PLS3 and SMN is poorly understood.Results: We provide immunohistochemical and biochemical evidence for large protein complexes localized in vertebrate motor neuron processes that contain PLS3, SMN and members of the hnRNP F/H family of proteins. Using a Caenorhabditis elegans (C. elegans) SMA model, we determine that overexpression of PLS3 or loss of the C. elegans hnRNP F/H ortholog SYM-2 enhances endocytic function and ameliorates neuromuscular defects caused by decreased SMN-1 levels. Furthermore, either increasing PLS3 or decreasing SYM-2 levels suppresses defects in a C. elegans ALS model.Conclusions: We propose that hnRNP F/H act in the same protein complex as PLS3 and SMN and that the function of this complex is critical for endocytic pathways, suggesting that hnRNP F/H proteins could be potential targets for therapy development.Peer reviewe

    Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species

    Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy

    Get PDF
    Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo
    • …
    corecore