61 research outputs found

    Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors.

    Get PDF
    How is information communicated both within and between cells of living systems with high signal to noise? We discuss transmembrane signaling models involving two receptor tyrosine kinases: the fibroblast growth factor receptor (FGFR) and the MET receptor. We suggest that simple dimerization models might occur opportunistically giving rise to noise but cooperative clustering of the receptor tyrosine kinases observed in these systems is likely to be important for signal transduction. We propose that this may be a more general prerequisite for high signal to noise in transmembrane receptor signaling.D.B.A is the recipient of a C. J. Martin Research Fellowship from the National Health and Medical Research Council of Australia (APP1072476). TLB and MB receive funding from the Gates Foundation, and T.L.B. and D.Y.C. from The Wellcome Trust (093167) for facilities and support. D.Y.C. is also supported by the Crystallographic X-ray Facility, Department of Biochemistry, University of Cambridge. We thank Ermanno Gherardi for many contributions to the experiments and to our thinking on the Met receptor structure and activation over the years.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.pbiomolbio.2015.04.00

    A new look at sodium channel β subunits.

    Get PDF
    Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits

    Structural insights into the role of domain flexibility in human DNA ligase IV.

    Get PDF
    Knowledge of the architecture of DNA ligase IV (LigIV) and interactions with XRCC4 and XLF-Cernunnos is necessary for understanding its role in the ligation of double-strand breaks during nonhomologous end joining. Here we report the structure of a subdomain of the nucleotidyltrasferase domain of human LigIV and provide insights into the residues associated with LIG4 syndrome. We use this structural information together with the known structures of the BRCT/XRCC4 complex and those of LigIV orthologs to interpret small-angle X-ray scattering of LigIV in complex with XRCC4 and size exclusion chromatography of LigIV, XRCC4, and XLF-Cernunnos. Our results suggest that the flexibility of the catalytic region is limited in a manner that affects the formation of the LigIV/XRCC4/XLF-Cernunnos complex

    Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.

    Get PDF
    Nanostructures composed of short, noncyclic peptides represent a growing field of research in nanotechnology due to their ease of production, often remarkable material properties, and biocompatibility. Such structures have so far been almost exclusively obtained through self-assembly from aqueous solution, and their morphologies are determined by the interactions between building blocks as well as interactions between building blocks and water. Using the diphenylalanine system, we demonstrate here that, in order to achieve structural and morphological control, a change in the solvent environment represents a simple and convenient alternative strategy to the chemical modification of the building blocks. Diphenylalanine (FF) is a dipeptide capable of self-assembly in aqueous solution into needle-like hollow micro- and nanocrystals with continuous nanoscale channels that possess advantageous properties such as high stiffness and piezoelectricity and have so emerged as attractive candidates for functional nanomaterials. We investigate systematically the solubility of diphenylalanine in a range of organic solvents and probe the role of the solvent in the kinetics of self-assembly and the structures of the final materials. Finally, we report the crystal structure of the FF peptide in microcrystalline form grown from MeOH solution at 1 Å resolution and discuss the structural changes relative to the conventional materials self-assembled in aqueous solution. These findings provide a significant expansion of the structures and morphologies that are accessible through FF self-assembly for existing and future nanotechnological applications of this peptide. Solvent mediation of molecular recognition and self-association processes represents an important route to the design of new supramolecular architectures deriving their functionality from the nanoscale ordering of their components.We thank the Newman Foundation (T.O.M., T.P.J.K.), the FEBS and the Tel Aviv University Center for Nanoscience and Nanotechnology (A.L.), the BBSRC (T.P.J.K.), and the Leverhulme Trust and Magdalene College (A.K.B.) for financial support. A.L. thanks Or Berger for his assistance with the HR-SEM imaging. The X-ray diffraction data collection experiments were performed in the crystallographic X-ray facility at the Department of Biochemistry, University of Cambridge. The authors thank Pavel Afonin for help with PHENIX software suite in the refinement of the structures.This is the accepted manuscript for a paper published in ACS Nano, 2014, 8 (2), pp 1243–1253 DOI: 10.1021/nn404237f , Publication Date (Web): January 14, 201

    OXA-66 structure and oligomerisation of OXAAb enzymes

    Get PDF
    The OXA β-lactamases are responsible for hydrolysing β-lactam antibiotics and contribute to the multidrug-resistant phenotype of several major human pathogens. The OXAAb enzymes are intrinsic to Acinetobacter baumannii and can confer resistance to carbapenem antibiotics. Here we determined the structure of the most prevalent OXAAb enzyme, OXA-66. The structure of OXA-66 was solved at a resolution of 2.1 Å and found to be very similar to the structure of OXA-51, the only other OXAAb enzyme that has had its structure solved. Our data contained one molecule per asymmetric unit, and analysis of positions responsible for dimer formation in other OXA enzymes suggest that OXA-66 likely exists as a monomer

    Crystal structure and molecular imaging of the Nav channel β3 subunit indicates a trimeric assembly.

    Get PDF
    The vertebrate sodium (Nav) channel is composed of an ion-conducting α subunit and associated β subunits. Here, we report the crystal structure of the human β3 subunit immunoglobulin (Ig) domain, a functionally important component of Nav channels in neurons and cardiomyocytes. Surprisingly, we found that the β3 subunit Ig domain assembles as a trimer in the crystal asymmetric unit. Analytical ultracentrifugation confirmed the presence of Ig domain monomers, dimers, and trimers in free solution, and atomic force microscopy imaging also detected full-length β3 subunit monomers, dimers, and trimers. Mutation of a cysteine residue critical for maintaining the trimer interface destabilized both dimers and trimers. Using fluorescence photoactivated localization microscopy, we detected full-length β3 subunit trimers on the plasma membrane of transfected HEK293 cells. We further show that β3 subunits can bind to more than one site on the Nav 1.5 α subunit and induce the formation of α subunit oligomers, including trimers. Our results suggest a new and unexpected role for the β3 subunits in Nav channel cross-linking and provide new structural insights into some pathological Nav channel mutations
    • …
    corecore