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Abstract 

Clostridium perfringens spores employ two peptidoglycan lysins to degrade the spore cortex 

during germination. SleC initiates cortex hydrolysis to generate cortical fragments that are 

degraded further by the muramidase SleM. Here we present the crystal structure of the C. 

perfringens S40 SleM protein at 1.8 angstroms. SleM comprises an N-terminal catalytic 

domain that adopts an irregular α/β-barrel fold that is common to GH25 family lysozymes, 

plus a C-terminal fibronectin type III domain. The latter is involved in forming the SleM 

dimer that is evident in both the crystal structure and in solution. A truncated form of SleM 

that lacks the FnIII domain shows reduced activity against spore sacculi indicating that this 

domain may have a role in facilitating the position of substrate with respect to the enzyme’s 

active site. 

  

Page 2 of 27

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 3

Introduction 

Bacterial species belonging to the orders Bacillales and Clostridiales initiate sporulation in 

response to nutrient starvation 1. The resultant endospores (spores) are equipped with several 

morphological and structural features that enable them to persist in the environment in a 

metabolically dormant state for many years. One such feature is the thick layer of cortical 

peptidoglycan (PG) that is deposited between the proteinaceous spore coat and the 

membrane-bound spore protoplast (core). The cortex is essential for the maintenance of the 

relatively dehydrated state of the spore core, which contributes to metabolic dormancy and 

spore heat resistance 2,3. An essential step during spore germination concerns the 

depolymerisation of the spore cortex by germination specific PG lysins, since this is required 

to permit hydration of the protoplast to levels that are commensurate with the resumption of 

metabolism 4. 

 Spores of Bacillus species employ the semi-redundant SleB and CwlJ lytic 

transglycosylases to initiate cortex hydrolysis during spore germination 5,6, generating 

cortical fragments that are then degraded further by the N-acetyl glucosaminidase SleL 7-9. In 

contrast, most members of the Clostridiales appear to rely upon the SleC lytic 

transglycosylase to initiate cortex hydrolysis 10-12, with the SleM muramidase acting upon the 

cortical fragments generated in a role that appears to be analogous to that of SleL in Bacillus 

spores 12,13. 

 Intriguingly, cortex lytic enzymes (CLEs) involved in the germination of both 

Bacillus and Clostridium spores are typically present in the dormant spore in mature forms. 

SleC is the exception, being present in the spore as an inactive zymogen that is subsequently 

cleaved and activated by Csp proteases during germination 11,14,15. Regardless, the molecular 

mechanisms involved in the regulation of CLE catalytic activity in dormant and germinating 

spores, and the basis of CLE cortical substrate specificity, are poorly understood. Recent 
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efforts to address these questions have employed X-ray crystallography to reveal the three-

dimensional structures of several proteins involved in cortex hydrolysis 16-19. In addition to 

placing mechanistic studies of CLE activity and specificity on a solid structural footing, this 

information should enable a structure-led approach to the design of inhibitors or stimulants of 

spore germination, which may in turn facilitate the development of novel therapeutic and 

decontamination strategies. 

 In this study, X-ray crystallography was used to solve the crystal structure of the 

Clostridium perfringens S40 SleM CLE to 1.8 Å, which represents the first high resolution 

Clostridiales CLE structure to be determined. In common with Bacillus CLEs for which 

structures are available, the protein is modular, comprising a modified α/β-barrel catalytic 

domain, plus a C-terminal fibronectin type III (FnIII) domain not previously observed in 

spore CLEs. 

 

Materials and Methods 

Expression and purification of SleM 

A DNA fragment encoding the full length C. perfringens S40 SleM protein (UniProt 

identifier O06496), codon optimised for expression in E. coli, was obtained from GeneArt 

Gene Synthesis (Paisley, UK). The entire sleM open reading frame (ORF), minus the stop 

codon, was subsequently amplified by PCR using primers (sequences available upon request) 

that included additional 5’ nucleotides to facilitate ligation independent cloning. The sleM 

amplicon was then purified and cloned into the pBADcLIC E. coli expression vector, which 

is designed to add a cleavable His10 tag at the C-terminal of the protein to facilitate 

purification 20. 

 Protein expression was conducted using E. coli Top10 cells (Life Technologies Ltd., 

Paisley, UK), which were cultured in 2 L baffled flasks containing 500 ml LB medium 
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supplemented with 50 µg/ml carbenicillin at 37oC and 225 rpm. The temperature was reduced 

to 30oC when the optical density of the culture at 600 nm (OD600) reached 0.6, upon which 

protein expression was induced by the addition of arabinose to a final concentration of 0.2 % 

(w/v). Protein expression continued for 5 h, and then the cells were harvested by 

centrifugation (8,000 g, for 10 min at 4oC), before washing the cellular pellets with buffer (50 

mM Tris-HCl [pH 8.0], 100 mM NaCl) and storing at –80oC. 

 SleM purification comprised thawing and resuspension of the cellular pellet in 16 ml 

of ice-cold binding buffer (20 mM sodium phosphate, pH 7.4, 500 mM NaCl, 20 mM 

imidazole, 1 mM phenylmethylsulfonyl fluoride [PMSF]). Cell lysis was achieved by three 

passes through a One Shot Cell Disrupter (Constant Systems Ltd., Northampton, UK) 

operating at 20 x 103 lb/in2. The cell lysate was centrifuged (15,000 g, for 20 min at 4oC), the 

supernatant passed through a 0.45 µM syringe filter, and then loaded on to a 1 ml Ni-

Sepharose HisTrap HP column (GE Healthcare, Little Chalfont, UK) fitted to an AKTA Pure 

protein purification system (GE Healthcare), which had been pre-equilibrated with the same 

ice-cold buffer (minus PMSF). The protein was eluted in the same buffer containing 500 mM 

imidazole, and then buffer-exchanged and concentrated into 25 mM sodium phosphate, pH 

7.0, 150 mM NaCl, 2 mM EDTA, 10% (v/v) glycerol, 1 mM DTT, using a 10 kDa MWCO 

Amicon centrifugal filter unit (Merck Millipore, Watford, UK). The C-terminal His10 affinity 

tag was subsequently removed by incubating overnight at 4oC with His6-tagged TEV 

(S219V) protease 21 (1 µg TEV protease to every 100 µg SleM). The reaction mix was 

subject to a second round of Ni2+-NTA affinity chromatography, using the same 1 ml 

HisTrap column equilibrated with ice-cold 20 mM sodium phosphate, pH 7.4, 500 mM NaCl.  

The SleM protein, now minus the affinity tag, was collected in the flow through fraction and 

then buffer exchanged into 20 mM Tris-HCl, pH 7.5 (buffer A), before loading onto a 1 ml 

Resource Q anion-exchange column (GE Healthcare) equilibrated with the same buffer at 
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room temperature. A salt gradient was applied using 20 mM Tris-HCl, pH 7.5, 1 M NaCl 

(buffer B), flow rate 4 ml min-1, with SleM eluting in fractions that contained approximately 

250 mM NaCl.  SleM-containing fractions were pooled, concentrated by ultra-filtration, and 

subjected to gel filtration using a Superdex 75 column (GE Healthcare) equilibrated with 20 

mM Tris-HCl, pH 7.0, 150 mM NaCl at room temperature. The purified protein, which 

contained vector-derived MGGGFA and ENLYFQ residues at the respective N- and C-

termini, was desalted using a HiTrap desalting column (GE Healthcare) and concentrated to 

9.5 mg/ml by ultra-filtration in 20 mM Tris-HCl, pH 7.0, 150 mM NaCl. The purified protein 

was aliquoted and stored at –80oC. 

 

Crystallisation of SleM 

Crystallisation trials were performed using the vapour diffusion sitting-drop technique in 96-

well MRC 2-drop crystallisation plates (Swissci UK, Wokingham, UK), mixing 200nL of 

the crystallisation screen conditions with 200 nL of protein solution (9.5 mg/ml) and setting 

this against 70 µL of reservoir using a crystallisation robot (Crystal Phoenix, Art Robbins 

Instruments, Inc.). Crystallisation trials were conducted at 19oC, using several commercial 

screens, with automated monitoring via a Rock Imager 1000 (Formulatrix, Inc.) imaging 

system. Initial hits were identified in PACT (condition B10) and PEGS I (condition G4) 

crystallisation screens (Qiagen, Manchester, UK) before optimising conditions in 24-well 

hanging-drop crystallisation plates (Hampton Research).  Diffraction quality crystals for 

SleM were obtained from 3 µl drops containing a 1:1 mixture of 9.5 mg/ml protein and a 

crystallisation solution comprising 0.1 M MES buffer, pH 6.0, 0.25 M MgCl2, 16% (w/v) 

PEG6000. Crystals appeared after a few days when incubated at 19oC, attaining maximum 

dimensions of approximately 0.2 mm x 0.5 mm x 0.5 mm after about 2 weeks. 
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Diffraction Data Collection and Processing 

Fully grown crystals were cryo-protected by mounting in loops prior to immersion in a drop 

containing the crystallisation condition plus 26% (v/v) ethylene glycol for a few seconds, and 

then flash-frozen in liquid nitrogen. The X-ray diffraction dataset was collected using a 

copper rotating anode X-ray diffraction system (wavelength of 1.5418 Å) equipped with a 

confocal mirror monochromator, a kappa geometry goniometer, and Platinum 135 CCD 

detector (X8 PROTEUM, Bruker AXS, Ltd.) at a temperature of 100K provided by the 

COBRA Cryostream cryogenic cooling device (Oxford Cryosystems, Ltd.). The exposure 

time was set to 20 sec for a single phi-oscillation image of 1 degree, and the total of 480 

oscillation images were collected in 3 different kappa geometry orientations.  The dataset was 

indexed, scaled and merged using PROTEUM2 data processing software (Bruker AXS, Ltd).  

The crystal belongs to the monoclinic P21 space group with cell parameters a= 50.60 Å, 

b=85.85 Å, c=87.21 Å, α = γ =90°, and β = 105.51°, and diffracted to a maximum resolution 

of 1.8 Å.  Analysis of the crystal solvent content using Matthews Coefficient indicated that 

two molecules of SleM are present in the crystallographic asymmetric unit. This composition 

results in about 50% of solvent content and Matthews Coefficient of 2.44. The 

crystallographic data collection statistics are shown in Table 1. 

 

Crystal Structure Determination, Model Building and Refinement 

The SleM crystal structure was solved by the Molecular Replacement (MR) method. The 

crystal structure of bacterial lysozyme (cellosyl) from Streptomyces Coelicolor (PDB-ID: 

1JFX) was used as the MR search probe. The sequence identity between the search probe and 

SleM is 29% over 210 residues, whereas the crystallized protein contains 332 residues 

(including vector derived residues). All MR calculations were performed in PHASER, part of 

the PHENIX crystallographic software suite 22. The positions of the two SleM molecules 
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within the asymmetric part of the unit cell were successfully identified. The translation factor 

Z-score for this solution was 44.8, indicating that an unambiguous solution has been found.  

The model obtained was subjected to several rounds of alternating manual rebuilding 

performed in the molecular graphics software suite Coot 23 and crystallographic refinement 

calculations in the PHENIX crystallographic software suite. Hydrogen atoms were added in 

their riding positions to the protein atoms but not to the water molecules. The Rcryst and Rfree 

factors converged to the values of 15.1% and 18.2%, respectively. The final model has no 

amino acid residues in disallowed and more than 99% in favoured regions of the 

Ramachandran phi-psi plot. The crystallographic statistics and structural validation aspects 

are shown in Table 1. The final model of the SleM crystal structure contains residues 4-320 

of molecule A, and residues 7-320 of molecule B in the asymmetric unit of the unit cell. The 

model also contains 1,140 water molecules, four MES molecules, and two Mg2+ ions. The 

metal ions were identified and placed into the electron density using PHENIX ion 

identification algorithms as implemented in the refinement protocols. 

 

Construction of variant SleM proteins 

The pBADcLIC-SleM plasmid described above served as a template to construct truncated 

(Q2-A229; M225-G321) and variant (D13N, D108N and E110Q) forms of SleM via PCR or 

employment of a QuikChange Lightning Site-Directed Mutagenesis kit (Agilent 

Technologies, Wokingham, UK) where appropriate. Similarly, the pBADc-LIC-GFP plasmid 

was employed to create full-length, catalytic (Q2-A229) and FnIII-domain (M225-G321) C-

terminal GFP-fusion proteins. Plasmids with the correct substitutions were identified by 

DNA sequencing and then introduced by transformation to E. coli Top 10 cells. Native and 

variant SleM proteins were expressed and purified essentially as described above. 
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Enzyme assays 

Enzymatic activity of the various forms of SleM was assessed by incubating purified 

enzymes with B. subtilis spore PG sacculi suspended at an optical density (A600 nm) of 0.5 

in 50 mM Tris-HCl, pH 7.5, containing 150 mM NaCl. Sacculi were incubated with 

recombinant B. megaterium SleB 24 (0.1 µM) plus designated SleM variant proteins (1 µM) 

at 37°C for 60 min. Reactions were monitored by recording changes in absorbance (600 nm) 

using a PerkinElmer Envision-Xcite multilabel plate reader. 

 

Analytical Ultracentrifugation 

Sedimentation velocity experiments were conducted with an Optima XL-I (Beckman 

Coulter) centrifuge using an An60 Ti four-hole rotor. Standard double-sector Epon 

centrepieces equipped with sapphire windows contained 400 µL of SleM or SleM catalytic 

domain (Q2 – G217) at 2.0 mg/mL. Interference data were acquired at time intervals of 330 s 

and rotor speeds of 45 krpm (SleM) or 40 krpm (SleM catalytic domain), at a temperature of 

20°C with systematic noise subtracted. The density and viscosity of the buffer and the partial 

specific volume of the protein were calculated using Sednterp 25. Multi-component 

sedimentation coefficient distributions were obtained from 75 scans (SleM) or 200 scans 

(SleM catalytic domain; even-numbered scans only were used for the fit) by direct boundary 

modelling of the Lamm equation using Sedfit v.14.1 26. 

 

Accession codes 

Atomic coordinates and structure factors for the SleM crystal structure have been deposited 

with the Protein Data Bank (PDB) under accession code 5JIP. 
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Results 

SleM crystal structure 

Crystals of C. perfringens SleM were obtained after heterologous expression of the protein in 

E. coli and subsequent purification to homogeneity. The orthologous C. botulinum protein 

also proved amenable to expression and purification from E. coli but failed to yield crystals. 

The SleM structure was solved by molecular replacement and refined to 1.8 Å, with an Rcryst 

of 15.1% and Rfree of 18.2% (Table 1). The asymmetric unit contained two SleM molecules 

arranged as a dimer, plus 1,140 water molecules, four MES molecules, three Mg2+ ions and 

one Na+ ion. The final electron density map shows clear density for both protein molecules in 

their entirety except for disordered sections comprising the final six C-terminal residues 

(NGEFLG) and N- and C-terminal residues introduced as cloning artefacts. Similarly, 

electron density for the side chain of K289 in molecule A was not observed, hence only the 

Cβ of the side chain has been modeled. All residues were in allowed regions of the 

Ramachandran plot. Superposition of both SleM protomers revealed that they are essentially 

identical (root mean square deviation [r.m.s.d] of 0.36 Å over 314 residues). 

 SleM comprises two structurally distinct domains (Figure 1). The N-terminal catalytic 

domain (Q2 – S220) is formed from a modified α/β-barrel fold (strictly [α/β]5[β]3) that is 

characteristic of lysozymes belonging to the GH-25 family, whereas the C-terminal domain 

(M225 to N315) adopts a fibronectin III (FnIII)-type fold, comprising a seven-stranded β-

sandwich. Searches conducted with the Dali 27 and Fatcat 28 servers failed to identify any 

proteins that share similarly placed α/β-barrel and FnIII domains. The α/β-barrel and FnIII 

domains are connected by a long loop (P218 – N234) that extends to β-1 of the FnIII domain, 

which is interrupted by a short 310-helix (I221 – L224). A magnesium ion is bound close to 

the 310-helix, in a solvent inaccessible location coordinated by backbone carbonyl groups 

from residues D222 and M225. Both residues are positioned at distances (2.0 Å and 2.2 Å 
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respectively) that are consistent with ligand-Mg2+ bonds 29. Temperature factor values in this 

region of the protein are indicative of low intrinsic mobility, suggesting that the bound Mg2+ 

ion may have a role in reducing inter-domain flexibility. The latter may be of biological 

significance since SleM has been shown previously to have a strict requirement for divalent 

metal ions for activity 13. 

 

FnIII domain (M225 to N315) and dimerisation 

Fibronectin type III domains are extremely common in animal modular proteins, where they 

are often linked in tandem to form extracellular matrix proteins or as part of the ectodomains 

of receptors. They have also been identified in several bacterial chitinolytic enzymes, 

including Serratia marcescens ChiA, ChiC and Bacillus circulans A1, where they appear to 

facilitate substrate binding to the catalytic domain 30,31. Comparative structural searches 

conducted with the Dali server identified the C-terminal located FnIII domain from the C. 

perfringens GH84C multi-modular N-acetylglucosaminidase as being the closest structural 

neighbour to the SleM FnIII domain (1.9 Å r.m.s.d. over 86 residues, Z score 12.6). The 

analogous domain from B. circulans chitinase A1 was also identified as a close structural 

match (2.1 Å r.m.s.d. over 84 residues, Z score 11.5). 

 In the case of SleM, the FnIII domain appears to provide an interface for protein 

dimerisation, which results in the burying of 2210 Å2 of the two subunits. The dimer is 

formed by salt bridges between charged residues located on α4 of the α/β-barrel and charged 

residues located on the FnIII domain of the second molecule (D127:K275, D131:K275, 

E135:K241), and hydrogen bonds between predominantly FnIII-located residues 

(N255:N255, Y265:R138, T268:N258). Analytical ultracentrifugation was conducted to 

ascertain whether the SleM dimer present in the crystalline state is representative also of the 

protein’s quaternary structure in solution, or whether the observed dimer is a consequence of 
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crystal packing in the presence of high protein concentration. The results of these analyses 

indicate that SleM is principally dimeric in solution, with sedimentation velocity [c(s)] 

distributions indicating that the protein exists predominantly as a single species in solution 

with a molecular weight of 73.4 kDa (the calculated protomer MW is 37.5 kDa) (Figure S1). 

However, a truncated version of the protein, comprising only the catalytic domain (Q2-A229) 

was shown to exist as a monomer in solution with a mass of 28.6 kDa (exactly matching the 

MW calculated from the sequence). 

 The truncated monomeric form of SleM retained the ability to digest cortical PG 

fragments generated by limiting concentrations of SleB in reaction mixtures, as evident by 

the reduction in absorbance (A600 nm) of suspensions of spore sacculi co-incubated with 

both proteins (Figure 2). However, the reduction in absorbance was significantly reduced 

compared to reactions containing full-length SleM (P<0.001 between 15 and 60 min), 

perhaps stemming from a reduced ability to recruit or bind substrate. Pull down assays 

conducted with GFP fusion proteins and purified spore sacculi, which indicate that only the 

full length SleM protein has discernible carbohydrate binding capacity (Figure S2), provide 

some evidence to support this hypothesis. 

 

SleM catalytic domain (Q2 – S220) 

The catalytic domain of SleM comprises an irregular α/β-barrel, in which only the first five 

β-strands are flanked by α-helices and β8, which is antiparallel with respect to the other 

strands, closes the barrel. The topology of the SleM catalytic domain is therefore consistent 

with other GH25 family lysozymes for which structures are available 32-37. The most closely 

related structures, identified from the Dali server, included several bacteriophage-associated 

endolysins. These included the Psm lysin from phage phiSM101, which targets Clostridium 

perfringens (1.7 Å r.m.s.d. over 196 residues, Z score 26.5), PlyB from the Bacillus anthracis 
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BcpI phage (1.9 Å r.m.s.d. over 172 residues, Z score 20.4), Ctp1L from ϕCTP1, which 

targets Clostridium tyrobutyricum (2.0 Å r.m.s.d. over 183 residues, Z score 23.1) and Cpl-1 

from Streptococcus pneumonia phage CP-1 (2.4 Å r.m.s.d. over 176 residues, Z score 18.7). 

Non-phage associated structural hits include a Bacillus anthracis GH25 lysozyme (2.1 Å 

r.m.s.d. over 189 residues, Z score 21.7) and the Streptomyces coelicolor cellosyl lysozyme 

that was used as the MR probe (1.8 Å r.m.s.d. over 187 residues, Z score 23.8). Comparable 

r.m.s.d values and high Z scores are indicative of significant structural similarity between 

SleM and the aforementioned proteins. 

 A structure-based multiple sequence alignment of the catalytic domains of SleM and 

related molecules is shown in Figure S3. From this, the carboxylate pair (D108 and E110), 

which share the DXE sequence motif common to GH25 enzymes, and which are proposed to 

catalyse cleavage of the substrate glycan chain via a “neighbouring group” mechanism 34, 

were readily identifiable. A third residue, D13, which is also conserved in the SleM sequence 

alignment, would most likely also be directly involved in catalysis if it proceeded via the 

classical “inverting” mechanism that has also been proposed for GH25 enzymes 38, although 

the actual mode has yet to be established. As well as being positionally conserved, Coot-

facilitated overlays of the catalytic domains of SleM and related proteins revealed that all 

three carboxylate residues are spatially conserved within the active centres of the respective 

enzymes. Functional assays conducted with variant SleM proteins bearing individual 

substitutions at these locations (D13N, D108N and E110Q) revealed a loss of detectable 

enzyme activity against purified spore PG sacculi co-incubated with the SleB CLE (Figure 

2). 

 In terms of substrate binding, SleM’s α/β-barrel has a notable cleft that traverses the 

C-terminal face (~30 Å) of the catalytic domain, measuring approximately 7 Å wide by 9 Å 

deep. Two MES molecules were observed within this groove in the SleM crystal structure, 
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presumably as a result of the high concentration (0.1 M) of this non-substrate molecule 

present in the crystallisation buffer (Figure 1d). Superposition of SleM’s α/β-barrel with the 

analogous domain from other GH25 enzymes reveals that residues that form the negatively 

charged pit towards the centre of the putative substrate binding cleft – around which the 

putative catalytic residues and one of the bound MES molecules are localised - are highly 

conserved both spatially and in the primary sequence alignment (Y68, F70, V106, W171, 

Y144, D213) (Figure S3). Similarly, as expected for a carbohydrate binding protein, aromatic 

residues feature heavily in the predicted substrate-binding groove (F17, Y68, F70, Y144, 

F148, F149), although sequence and spatial conservation with other GH25 enzymes is less 

evident here, which presumably reflects substrate specificity. By overlaying the coordinates 

of Cpl-1 with bound ligand (tetrasaccharide pentapeptide) (PDB-ID: 2J8G) with SleM’s α/β-

barrel we can infer that the entrance to the SleM substrate binding site is formed by L147 and 

F148 on one side of the cleft and S180 and N181 on the other. While the pentapeptide moiety 

of the overlaid ligand cannot be accommodated within the SleM binding site - which isn’t 

surprising since this moiety is not present in spore PG - we can use the location of the NAG 

residues at the +1 and +3 positions to identify the probable binding pocket for the muramic-

acid lactam (MAL) moiety (Figure 3). The latter is unique to spore PG and serves to 

differentiate between cortical and germ cell wall PG for CLE activity during spore 

germination 39,40. Hence, if we consider tetrasaccharide tetrapeptide (or alanine) as a 

candidate SleM substrate, which has a glycan backbone comprising NAM-NAG-MAL-NAG, 

then catalysis would occur between NAM and NAG located at the -1 and +1 locations 

respectively. Accordingly, MAL would be bound at the +2 location in this model, 

accommodated in the pocket formed by T113, Y144, G146, F148, F149 and catalytic E110. 

 

Discussion 

Page 14 of 27

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 15

The SleM crystal structure represents the first Clostridium CLE structure to be solved and the 

third CLE – after B. cereus and B. megaterium SleL 19 - for which complete structures have 

been determined. Crystal structures for the catalytic domains of B. cereus 17 and B. anthracis 

SleB 16, and B. subtilis YdhD (PDB-ID: 3CZ8), have also been solved by X-ray 

crystallography, meaning that of the major CLEs, three dimensional structural information is 

lacking only for CwlJ and SleC. With the exception of the aforementioned CwlJ, which is 

capable of initiating cortex depolymerisation in Bacillus spores, and may also have a role in 

germination of some Clostridial species, all CLEs adopt a modular structure. Typically, this 

entails a single catalytic domain plus one (e.g. SleB) or two (e.g. SleL) substrate binding 

domain(s). The SleM structure revealed the presence of a C-terminal located FnIII domain, 

which wasn’t identified from primary sequence analyses. The precise role of this domain 

hasn’t been clarified, although evidently FnIII-located residues participate in formation of the 

SleM dimer that is observed in the crystal structure and in solution. A role in dimer formation 

has been demonstrated recently for FnIII-type domains, namely in the irisin myokine 

associated with the human FNDC5 receptor 41. However, a truncated variant of SleM, 

comprising only the α/β-barrel catalytic domain, was shown to be monomeric in solution 

while displaying reduced activity against pre-digested cortical PG. Hence, neither the FnIII 

domain nor dimer formation is essential to SleM catalytic function, although these data 

perhaps indicate a role in recruitment or correct orientation of PG substrate relative to the 

catalytic domain. Similar roles for FnIII-type domains have been characterised or alluded to 

previously for chitinolytic and PG lysins 30,31. Indeed, the SleM FnIII domain has several 

surface-exposed aromatic residues (Y265, F283 and Y284 on one side of the domain, with 

Y235 and F243 on the other), which have been shown to be of functional importance in 

FnIII-carbohydrate interactions in Serratia marcescens ChiB 30. If this applies to the SleM 
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FnIII domain then it is intriguing that at least three different folds are employed by CLE 

substrate-binding domains to interact with the structurally unique spore cortical PG. 

 Unfortunately, none of the CLE crystal structures solved to date contain PG ligands 

bound to the catalytic or substrate-binding domains. As such, precise information on residues 

involved in substrate specificity – in particular, selective binding of PG containing the MAL 

moiety – has yet to be ascertained. It seems also that appropriately liganded structures will be 

required to yield insight to the structural basis for differentiation between CLEs that can 

cleave intact spore PG (e.g. SleB, SleC) and those that appear only to be active against pre-

digested or fragmented cortical PG. All three cortical fragment lytic enzymes for which 

three-dimensional structural information is available (SleM, SleL and YdhD) share α/β-

barrel-type folds, whereas SleB, which can lyse intact PG, adopts a fold reminiscent of 

family-1 transglycosylases, albeit with unique topology. The latter results in a catalytic 

domain with a wide accessible substrate binding cleft compared to the convoluted α/β-barrel 

enzyme clefts, and perhaps this is essential in accommodating cortical PG as arranged in the 

dormant spore sacculus. Future studies of enzyme-substrate complexes should help to clarify 

this situation, and will contribute to on-going work aimed at developing novel therapeutics 

and agents for improved control of spores. 
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Figure Legends 

Figure 1 Crystal structure of Clostridium perfringens SleM. (a) Cartoon representation of the 

SleM dimer, rotated by 90o with respect to (a) to show (b) top, and (c) side views of the 

molecules. The C-terminal face of the catalytic α/β-barrel as depicted in (c), is shown in 

surface representation in (d), which also shows the location of two MES molecules that were 

bound in the enzyme’s substrate binding groove. 

 

Figure 2 Purified Bacillus subtilis spore sacculi incubated with variant C. perfringens SleM 

proteins. Spore sacculi were resuspended at an OD600 ~0.5 in 50 mM Tris-HCl (pH 7.5) 

containing 150 mM NaCl, and then co-incubated at 37oC with 0.1 µM B. megaterium SleB 

plus 1 µM of full length SleM (●), SleMcat Q2-A229 (▲), SleM D13N (◊), SleM D108N (×) 

or SleM E110Q (☐). Control reactions individually containing SleM (�) or SleB (o) are also 

shown. Hydrolysis of sacculi was measured by following changes to the optical density 

(A600) of the suspension as described in the Materials and Methods. Data shown are the 

mean ± standard deviation of three independent assays. For clarity, error bars are not shown 

for reactions containing SleB alone, and SleM D13N, D108N and E110Q variant proteins. 

Standard deviations in these cases were <15% of mean values. 

 

Figure 3 Electrostatic surface of the SleM catalytic barrel as calculated by APBS 42, ranging 

from –3 kT/e in red (most negative) to +3 kT/e in blue (most positive), superposed with a 

peptidoglycan analogue from the Cpl-1-ligand complex (PDB-ID: 2J8G) [the catalytic barrels 

from both enzymes overlay with an r.m.s.d. of 2.4 Å over 176 residues, Z score 18.7]. The 

spore-specific muramic-acid lactam (MAL) moiety is predicted to be located in the +2 

position instead of NAM as shown in the figure, with cleavage of the substrate taking place 

between NAM and NAG located at the respective -1 (not shown) and +1 subsites. Catalytic 
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D13, D108 and E110, which surround the electronegative centre of the enzyme, are labelled 

and shown in stick representation. 

 

Figure S1 Analytical ultracentrifugation sedimentation velocity data. The residuals are from 

the fit with the continuous c(s) distribution model. (A) Component sedimentation coefficient 

distribution for SleM at 2 mg/mL showing populations of monomeric and dimeric species 

fitting to a uniform frictional ratio of Fk,w = 1.3. The r.m.s.d. was 0.02. (B) Distribution for 

SleM (2-217) also at 2 mg/mL contains monomeric species only (so
20,w = 2.68).  The fitted 

frictional ratio and mass were Fk,w = 1.3 and 28.6 kDa, respectively. The r.m.s.d. was 0.01. 

 

Figure S2 Pulldown assay conducted with full length and truncated SleM-GFP proteins 

against spore sacculi. Essentially, 100 µM of each purified protein was incubated with 30 µL 

of purified B. subtilis spore sacculi (OD~50 at 600 nm) in 20 mM sodium phosphate buffer 

(pH 7.0), and the samples (200 µL) incubated with gentle agitation at 4oC for 2 hours. 

Samples were then subjected to centrifugation at 15,000 g for 10 minutes before being 

analysed on a FastGene blue light LED illuminator (Geneflow Ltd., Lichfield, UK). Strong 

fluorescence was associated with the pelleted sacculi in only the full length SleM-GFP 

sample, indicating that both catalytic and FnIII domains are required for efficient binding to 

spore peptidoglycan. 

 

Figure S3 Clustal Omega sequence alignment of the catalytic α/β-barrel domains from a 

selection of family GH25 lysozymes for which three-dimensional structural information is 

known. Asterisks denote conserved residues. Residues that form the negatively charged pit 

that represents the active site of the enzyme, which are highly conserved both spatially and in 

the primary sequence alignment with other GH25 family enzymes, are boxed in red. These 
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include residues implicated directly in catalysis (D13, D108 and E110), which are boxed in 

blue. 
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Table 1. Crystallographic X-ray data collection, phasing and refinement statistics 
 

 Native Dataset  

Data collection  
Radiation Source In-house, Copper Rotating Anode 

Wavelength (Å) 1.5418 
Space group P21 
Cell dimensions:  

a, b, c (Å) 50.60 85.85 87.21 
α, β, γ (o) 90.0 105.51 90.0 

Resolution (Å) 42.40 – 1.80 (1.90 – 1.80)a 
Rsym

 b (%) 
<I / σ(I)> 

7.4 (35.7) 
24.5 (5.0) 

Completeness (%) 99.6 (98.2) 
Redundancy 3.9 (2.9) 
Number of unique reflections 66,317 (9,699) 

 
Refinement  
Resolution (Å) 42.40 – 1.80 
Number of reflections used:  

Total 66,249 
Rfree set 1,990 

R cryst
c/ R free

d (%) 14.9 / 18.3 
Solvent content, % 49.7 
Number of protein molecules in 
asymmetric unit 

2 

Number of non-hydrogen of 
atoms in asymmetric unit: 

 

Protein atoms 5,052 
Mg2+ ion atoms 
Na+ ion atoms 

MES atoms 

3 
1 
48 

Water molecules 1,144 
B-factor, (Å2):   

Average 17.0 
Wilson 14.1 

Ramachandran plot analysis, 
number of residues in: 

 

Favoured regions, % 99.36 
Allowed regions, % 0.64 

Disallowed regions, % 0 
R.m.s. deviations:  

Bond lengths (Å) 0.011 
Bond angles (°) 1.300 

 
a The statistics shown in parentheses are for the highest-resolution shell. 
b Rsym = Σ i | Ii(hkl) - Imean(hkl)|) / Σ hkl Σ i Ii(hkl 
c Rcryst =Σ hkl ||Fobs(hkl)| - |Fcalc(hkl)||/Σ hkl |Fobs(hkl)| 
d R free is the same as Rcryst for a random subset not included in the refinement of about 10% of total 
reflection. 
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Figure 1 Crystal structure of Clostridium perfringens SleM. (a) Cartoon representation of the SleM dimer, 
rotated by 90o with respect to (a) to show (b) top, and (c) side views of the molecules. The C-terminal face 
of the catalytic α/β-barrel as depicted in (c), is shown in surface representation in (d), which also shows the 

location of two MES molecules that were bound in the enzyme’s substrate binding groove.  
Figure 1  
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Figure 2 Purified Bacillus subtilis spore sacculi incubated with variant C. perfringens SleM proteins. Spore 
sacculi were resuspended at an OD600 ~0.5 in 50 mM Tris-HCl (pH 7.5) containing 150 mM NaCl, and then 
co-incubated at 37oC with 0.1 µM B. megaterium SleB plus 1 µM of full length SleM (●), SleMcat Q2-A229 

(▲), SleM D13N (◊), SleM D108N (×) or SleM E110Q (☐). Control reactions individually containing SleM (■) 

or SleB (o) are also shown. Hydrolysis of sacculi was measured by following changes to the optical density 
(A600) of the suspension as described in the Materials and Methods. Data shown are the mean ± standard 
deviation of three independent assays. For clarity, error bars are not shown for reactions containing SleB 

alone, and SleM D13N, D108N and E110Q variant proteins. Standard deviations in these cases were <15% 
of mean values.  

Figure 2  
140x86mm (300 x 300 DPI)  
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Figure 3 Electrostatic surface of the SleM catalytic barrel as calculated by APBS 42, ranging from –3 kT/e in 
red (most negative) to +3 kT/e in blue (most positive), superposed with a peptidoglycan analogue from the 
Cpl-1-ligand complex (PDB-ID: 2J8G) [the catalytic barrels from both enzymes overlay with an r.m.s.d. of 

2.4 Å over 176 residues, Z score 18.7]. The spore-specific muramic-acid lactam (MAL) moiety is predicted to 
be located in the +2 position instead of NAM as shown in the figure, with cleavage of the substrate taking 

place between NAM and NAG located at the respective -1 (not shown) and +1 subsites. Catalytic D13, D108 
and E110, which surround the electronegative centre of the enzyme, are labelled and shown in stick 

representation.  
Figure 3  
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