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Abstract 

The crystal structure of the C-terminal domain of the Bacillus megaterium YpeB protein has 

been solved by X-ray crystallography to 1.80 Å resolution.  The full-length protein is 

essential in stabilising the SleB cortex lytic enzyme in Bacillus spores, and may have a role in 

regulating SleB activity during spore germination.  The YpeB-C crystal structure comprises 

three tandemly repeated PepSY domains, which are aligned to form an extended laterally 

compressed molecule.  A predominantly positively charged region located in the second 

PepSY domain may provide a site for protein interactions that are important in stabilising 

SleB and YpeB within the spore. 
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Introduction 

Bacterial cells of the genera Bacillus and Clostridium initiate the process of sporulation in 

response to nutrient starvation.  The resultant endospores (or spores) have several unique 

morphological and structural features that result in metabolic dormancy and an ability to 

persist in the environment for perhaps millennia1.  In order to re-initiate vegetative growth 

and metabolism, the spore has to undergo the process of germination, which is triggered 

typically by the presence of defined nutrient molecules in the spore environment2. 

 A major event in germination concerns the enzymatic degradation of the thick layer of 

structurally distinct peptidoglycan, or cortex, that surrounds the spore protoplast.  A limited 

number of cortex-lytic enzymes (CLEs) are responsible for conducting cortical 

depolymerisation during germination.  Spores of Bacillus species, and a few Clostridia, 

require functional SleB or CwlJ to initiate this process, with additional enzymes, including 

SleL and perhaps YdhD, having roles in further degrading large cortical fragments generated 

by SleB and CwlJ activity3. 

 Bacillus CLEs are present in the spore in a mature but inactive form, and as yet, little 

is known of the mechanisms that limit their activity to a defined window within the 

germination process.  One hypothesis is that the SleB protein is somehow held in an inactive 

state during dormancy by an interacting partner protein, namely YpeB, and that disruption of 

this interaction during germination permits SleB activity.  Several lines of evidence support 

this hypothesis, namely (i) YpeB and SleB display a reciprocal relationship concerning their 

presence in the spore i.e. SleB is missing in YpeB null mutant spores4, and vice versa;5,6 (ii) 

YpeB has been shown to be proteolytically cleaved during germination, perhaps breaking the 

interaction with SleB and permitting activity of the latter4,7; (iii) bioinformatic analyses 

predict that the C-terminal domain of the protein contains 2 – 3 tandem repeats of the PepSY 

motif (Pfam accession PF03413) that has been shown to inhibit peptidase activity in M4 and 
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M36 metallopeptidases8; and (iv) in vitro assays conducted with recombinant versions of 

SleB co-incubated with either full-length YpeB or defined N-terminal and C-terminal domain 

fragments demonstrate inhibition of SleB activity, to various degrees, in the presence of the 

variant YpeB proteins5.  Despite the above, efforts to ascertain whether SleB and YpeB 

physically interact have as yet delivered negative results5,6. 

 In order to gain insight to the molecular mechanisms that regulate cortical 

depolymerisation during spore germination, high-resolution structures for a number of spore 

CLEs have recently been solved using X-ray crystallographic methods9,10.  In a similar vein, 

we present here the crystal structure of the C-terminal domain of the YpeB protein from B. 

megaterium. 

 

Materials and Methods 

Expression and purification of YpeB-C 

A DNA fragment encoding the predicted C-terminal domain of the B. megaterium QM 

B1551 YpeB protein (UniProt accession D5DRI0), comprising codons 216 – 449, was 

amplified by PCR using purified genomic DNA as template.  The following primer pair, both 

of which include additional nucleotides at the 5’ ends to facilitate ligation independent 

cloning, were used in the PCR reaction: 

 5’-ATGGTTGTTGGATTTGCTGCTTTTCATCAATTAAAAGGTAGAGAA-3’ and 5’-

TTGGAAGTATAAATTTTCCACTTCATTATATAAAGGTTCTGAGTT-3’.  The PCR 

amplicon was purified and cloned into plasmid pBADcLIC E. coli expression plasmid, which 

is designed to create C-terminal His10 fusion proteins.  Protein expression was conducted 

using E. coli Top10 cells (Life Technologies), which were cultured in LB medium containing 

50 µg/ml carbenicillin at 37oC, 225 rpm, until the optical density at 660 nm (OD660) reached 

0.6, when the temperature was reduced to 30oC and protein expression induced by the 
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addition of arabinose to a final concentration of 0.2 % (w/v).  Protein expression continued 

for 6 h, before the cells were harvested by centrifugation (8,000 g, for 10 min at 4oC).  The 

resultant cellular pellets were washed with buffer (50 mM Tris-HCl [pH 8.0], 100 mM NaCl) 

and then stored at -80oC. 

 Purification of YpeB-C entailed defrosting and resuspension of the E. coli cellular 

pellet in 16 ml of ice-cold binding buffer (20 mM sodium phosphate [pH 7.4] plus 500 mM 

NaCl, 20 mM imidazole and 1 mM phenylmethylsulfonyl fluoride [PMSF]).  The cells were 

lysed by passing the suspension twice through a One Shot Cell Disrupter (Constant Systems 

Ltd., Northampton, UK) operating at 20 x 103 lb/in2.  The cell lysate was then centrifuged 

(15,000 g, for 20 min at 4oC), before passing the supernatant through a 0.46 µM syringe 

filter.  The clarified lysate was then loaded on to a 1 ml Ni-Sepharose HisTrap HP column 

(GE Healthcare) fitted to an AKTA Pure protein purification system (GE Healthcare), which 

had been pre-equilibrated with the same ice-cold buffer.  The protein was eluted in the same 

buffer containing 500 mM imidazole, and then buffer-exchanged and concentrated into 50 

mM Tris-HCl (pH 8.0), containing 0.5 mM EDTA and 1 mM DTT, using an Amicon 

centrifugal filter unit with a 10 kDa MWCO (Merck Millipore, Watford, UK).  The C-

terminal His10 affinity tag was removed from YpeB-C by digesting overnight at 4oC with 

TEV (S219V) protease (1 µg TEV protease to every 100 µg YpeB-C).  The reaction mix was 

applied to a 1 ml Ni-Sepharose HisTrap HP column, equilibrated with ice-cold 20 mM 

sodium phosphate (pH 7.4) containing 500 mM NaCl.  The affinity tag-free YpeB-C protein, 

present in the column flow-through fraction, was buffer exchanged into 20 mM Tris-HCl (pH 

7.5) before loading onto a 1 ml Resource Q anion-exchange column (GE Healthcare) 

equilibrated with the same buffer at room temperature.  A salt gradient was applied using 20 

mM Tris-HCl (pH 7.5) plus 1 M NaCl, flow rate 4 ml min-1, with the YpeB-C protein eluting 

in fractions containing approximately 250 mM NaCl.  The fractions were then combined, 

Page 5 of 20

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 6

concentrated by ultra-filtration, and further purified by gel filtration, using a Superdex 75 

column (GE Healthcare) equilibrated with phosphate buffered saline (pH 7.4) at room 

temperature.  Finally, the eluted protein was de-salted using a HiTrap desalting column (GE 

Healthcare) and concentrated to 12 mg/mL by ultrafiltration (Amicon Centrifugal Filter 

Units, MWCO 10kDa; Millipore) in 5 mM sodium phosphate (pH 7.0) plus 25 mM NaCl.  

The purified protein was aliquoted and stored at -80oC. 

 

Crystallisation of YpeB-C 

Crystallisation trials were performed using the vapour diffusion sitting-drop technique in 96-

well MRC 2-drop crystallisation plates (SWISSCI, Wokingham, UK).  nL of the 

crystallisation screen conditions were mixed with 200 nL of protein solution (12 mg/ml) and 

set against 70 µL of reservoir using a crystallisation robot (Crystal Phoenix, Art Robbins 

Instruments, Inc.). A number of crystallisation trials using various crystallisation screening 

kits were performed, incubated at 19°C and monitored in a Rock Imager 1000 (Formulatrix, 

Inc.) automated imaging system.  After identifying an initial crystallisation hit in condition #1 

of the JCSG+ screen (Qiagen) containing 0.2 M lithium sulphate, 0.1 M sodium acetate pH 

4.5 and 50 % (v/v) PEG 400, optimisation trials were conducted using the hanging drop 

vapour diffusion method at 19oC in 24-well hanging-drop crystallisation plates (Hampton 

Research) containing varying concentrations of precipitant agents.  Diffraction quality 

crystals for YpeB-C were obtained from 3 µl drops containing a 1:1 mixture of 12 mg/ml 

protein and a crystallisation solution composed of 0.27 M lithium sulphate and 44 % (v/v) 

PEG 400 in 0.1 M sodium acetate (pH 4.5).  Growth of relatively thin plate-type crystals was 

evident within 24 – 48 h, with the crystals attaining their maximum size (approx. 0.2 x 0.1 x 

0.05 mm3) after 1-2 weeks.  To obtain the heavy metal derivative for the phasing experiments 

the crystals of YpeB-C were soaked for 4 h in a drop containing the crystallisation condition 
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and 5 mM potassium tetrachloroplatinate (II).  The crystals were then back-soaked in a drop 

containing the crystallisation condition and 26 % (v/v) ethylene glycol for 10-20 min and 

then flash frozen in liquid nitrogen until the X-ray data collection. 

 

Diffraction data Collection 

The X-ray diffraction datasets for both the native and platinum derivative crystals of YpeB-C 

were collected at the Diamond Light Source (Oxford, UK), beamline I04. The platinum 

derivative crystal was subjected to an initial fluorescence scan under an attenuated beam at 

the platinum K-edge, prior to SAD diffraction data collection from the same crystal at a 

wavelength of 1.0721 Å.  The native crystal dataset was collected at a wavelength of 0.9795 

Å.  The crystals of YpeB-C, which belonged to the C-centred orthorhombic system and 

C2221 space group, diffracted to a maximum resolution of 1.80 Å in the case of native dataset 

and 2.20 Å for the crystal of platinum derivative.  The diffraction data were indexed, scaled, 

and merged using XDS software.  Analysis of the crystal solvent content using Matthews’ 

Coefficient indicated the presence of a single molecule in the crystallographic asymmetric 

unit, resulting in a Matthews coefficient of 2.34 and solvent content of about 47.5%.  

Crystallographic data collection, phasing and refinement statistics are detailed in Table 1. 

 

Crystal Structure Determination, Model Building and Refinement 

The B. megaterium YpeB-C crystal structure was solved using the single-wavelength 

anomalous diffraction (SAD) technique.  Experimental phases were obtained from the 

platinum derivative SAD dataset.  The PHENIX11 software suite was used to perform all 

crystallographic calculations for structure solution and refinement.  The analysis of the 

anomalous measurability values in the SAD dataset, as defined by the Xtriage module of 

PHENIX, demonstrated the presence of statistically significant anomalous signal to about 3.3 
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Å resolution.  The search for anomalous atoms, conducted using the HySS (Hybrid 

Substructure Search) module of the PHENIX software suite, identified the position of 13 

possible platinum ion sites in the asymmetric unit.  Phases were calculated using Phaser 

(Figure of Merit 0.32) and further improved by electron density modification using 

RESOLVE (Figure of Merit 0.62).  The resulting experimental electron density map was 

readily interpretable and an automated model building procedure in PHENIX against the 

platinum derivative dataset, including all available resolution to 2.20 Å, produced an initial 

model containing 93 residues out of a total of 234 residues (Rcryst = 45.9%, Rfree = 46.9%).  

This model was then manually rebuilt using the COOT molecular graphics software suite and 

refined using PHENIX against the native 1.80 Å resolution dataset.  A total of 9 rounds of 

manual rebuilding and refinement were performed, during which the lesser-defined PepSY 

domain (PepSY1) was successfully traced.  Solvent molecules and sulphate ions were added 

manually and through an automated procedure as implemented in the PHENIX refinement 

protocols.  The Rcryst and Rfree converged to the values of 19.5% and 22.7%, respectively.  

The crystallographic statistics and structural validation aspects are shown in Table 1.  Atomic 

coordinates and structure factors for the YpeB-C crystal structure have been deposited with 

the Protein Data Bank (PDB) under accession code 5BOI. 
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Results and Discussion 

YpeB-C crystal structure 

Crystallisation experiments conducted with full-length YpeB protein and an N-terminal 

domain construct failed to yield diffraction quality crystals.  However, the C-terminal domain 

of the B. megaterium YpeB protein (hereafter YpeB-C) crystallised readily, with SAD 

phasing permitting the solution of the three dimensional structure at 1.80 Å resolution.  The 

respective Rcryst and Rfree values were 19.5% and 22.7% (Table 1).  The crystallised protein 

contained residues 216 – 449 of the full-length protein, plus the cloning artefacts MGGGFA 

and ENLYFQ at the respective N- and C-termini.  The analysed crystal contained a single 

YpeB-C monomer in the asymmetric unit, plus 100 water molecules and two sulphate ions 

derived from the crystallisation buffer.  The calculated electron density map allowed largely 

unambiguous tracing of most of the crystallised protein residues, although neither the N- or 

C-terminal cloning artefact residues were visible in the map.  Similarly, the final eight YpeB-

C residues (S442 through to V449) were not observed in the electron density map, 

presumably as a result of structural disorder at the C-terminus.  In two cases (R217 and 

K418) electron density was such that only Cβ of side chain atoms could be placed with 

certainty (residue numbering refers to the amino acid position in the full length protein 

sequence).  The Ramachandran plot, produced by MolProbity12, revealed that 97% and 100% 

of amino acids were in the favoured and allowed regions, respectively. 

 The YpeB-C molecule adopts an elongated S-shaped structure with approximate 

dimensions of 60 x 40 x 20 Å (Figure 1).  As predicted from bioinformatic analysis, the 

molecule is formed of three tandem PepSY domain repeats (PepSY – peptidase of M4 and 

Subtilis YpeB protein).  Each PepSY domain is comprised of four antiparallel beta strands 

with an α-helix positioned on the convex side of the beta sheets.  PepSY1 (S220 – D284) and 

PepSY2 (I292 – R368) are connected by a long loop extending from β-strand 4 to α-helix 2 
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of PepSY2, and oriented such that interaction between the domains is limited to the 

antiparallel alignment of β-strand 4 from PepSY1 with β-strand 10 of PepSY2.  The major α-

helices of both PepSY1 and PepSY2 are on the same face of the molecule, each traversing 

their respective beta sheets at a similar angle.  In contrast to the other PepSY domains, 

PepSY2 has three short tandem β-strands, namely β6, and the hairpin forming β7 and β8.  

PepSY3 (S378 – L439) is connected to PepSY2 via an extended short-helix (α3)-loop-long 

helix (α4) motif, which together with the 4-stranded antiparallel beta sheet, is characteristic 

of PepSY-like folds adopted in other proteins13.  The third PepSY domain is aligned broadly 

in the same plane as PepSY1 and 2, forming a laterally compressed molecule, however, the 

domain is oriented almost perpendicularly to PepSY1 and PepSY2, such that α-helix 4 forms 

the base of the molecule. 

 

Structural alignment 

Structural comparison between YpeB-C and other protein structures, and indeed comparison 

of YpeB-C’s individual PepSY domains with each other, was examined using both rigid and 

flexible superposition algorithms, with the FATCAT flexible pairwise alignment algorithm 

delivering the most satisfactory results.  Using this method to compare YpeB-C’s individual 

PepSY domains, one at a time against each other, revealed that all three domains are 

structurally significantly similar (P values < 5x10-4).  Root mean square deviation (r.m.s.d) 

values range from 2.11 Å (superposition of PepSY2 with PepSY3) to 2.49 Å (superposition 

of PepSY1 with PepSY2), despite low sequence identity values (<13% in all cases). 

 Searches for proteins of similar structure to YpeB-C were made using the DALI14 and 

FATCAT
15 servers.  Both servers returned a similar range of hits, comprising PepSY, 

DUF2874 and β-lactamase inhibitor (BLIP)-like proteins.  Proteins of the latter two families 

contain similar 4-strand antiparallel beta sheet-loop-alpha helical structural domains, and, 
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like PepSY-containing proteins, have been identified as having inhibitory functions13.  

Notably, structural similarity to a YpeB-like protein from the anaerobic spore-former 

Clostridium difficile 630 was identified by these searches.  This 205 amino acid protein, 

encoded at locus CD630_16220 (UniProt Q186H8; PDB 4EXR), has not been characterised 

functionally in C. difficile spores, and does not share an operon with a SleB gene, a candidate 

for which is encoded at locus CD630_35630.  The C. difficile YpeB-like protein comprises 

two tandem repeat PepSY domains, which are oriented to form a C-shaped molecule in which 

the β-sheets form the inner concave surface and the α-helices form the outer convex surface.  

In contrast to Bacillus species YpeB proteins, the C. difficile protein lacks an N-terminal 

domain, other than the predicted membrane anchor sequence.  Superposition of YpeB-C with 

4EXR using the FATCAT flexible pairwise alignment algorithm revealed that the two 

structures are significantly similar (P < 7x10-6) with an optimised r.m.s.d of 2.49 Å when a 

single twist is introduced (Figure 2[a]).  The aligned structures have 131 equivalent positions 

while sharing only 15% sequence identity.  The requirement for the introduction of a twist to 

re-orient 4EXR’s PepSY domains, enabling significant structural alignment with YpeB-C, 

presumably explains the failure of early attempts at solving the YpeB-C structure by 

molecular replacement (MR), using the 4EXR structure as the MR probe. 

 Other notable structural alignment hits identified by both DALI and FATCAT servers 

include the uncharacterised Bacillus subtilis YpmB protein (UniProt P54396; PDB 2GU3), 

which like 4EXR contains two PepSY domains oriented to give a relatively compressed 

concave shaped molecule, although the placement of the α-helices differs to that observed in 

4EXR.  Again, the FATCAT flexible pairwise alignment algorithm introduces a single twist 

that permits significant (P < 3x10-4) structural alignment of both YpmB PepSY domains with 

YpeB-C.  Here, YpmB superposes with YpeB-C’s PepSY1 and PepSY2 domains, with an 

optimised r.m.s.d. value of 3.33 Å across 122 equivalent positions (sequence identity <11 %).  
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The YpeB-C structure also aligns significantly (P < 2x10-3) with the B. subtilis sensory 

histidine kinase regulatory protein YycI (UniProt Q45612; PDB 2o3o), where the 

introduction of two twists permits an optimised r.m.s.d. of 2.97 Å, with 174 residues placed 

in equivalent positions. 

 In all cases that we have examined then, including several not reported here, optimal 

structural alignment between YpeB-C and other PepSY (or DUF2874 and BLIP) family 

proteins requires re-positioning of one or more PepSY domains, indicating that the overall 

architecture adopted by the triple tandem PepSY repeat in YpeB-C may be unique to this 

protein.  Presumably this will apply also to other Bacillus spore YpeB proteins, although this 

will have to be determined in due course. 

 

Structural insights to YpeB function 

Recent work conducted with truncated YpeB proteins in B. anthracis spores demonstrated 

that all three PepSY domains are required for the concomitant stability of YpeB and SleB in 

dormant spores6.  In the same study, a variant YpeB protein containing the N-terminal 

domain and PepSY1 from the C-terminal domain was shown to be relatively stable in the 

spore, however, SleB abundance was diminished in this strain, indicating that a region 

beyond PepSY1 is essential to confer stability to SleB in the spore.  With this in mind, 

examination of an electrostatic potential surface representation of YpeB-C, calculated using 

the Adaptive Poisson-Boltzmann Solver (APBS) Pymol plug-in16, reveals a large shallow 

channel or groove that traverses the middle of the molecule.  This region is marked by 

positive surface charge, formed by K345 and K347 from β9 (PepSY2) and K361 and K366 

from the short α-helix 3, and may be a candidate site for protein interactions (Figure 2[b]).  

Bernhards et al., also identified a number of defined residues (Y254, Y410 and G430) that 

appear to be important to YpeB stability in B. anthracis spores6.  Analysis of the 
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corresponding residues in the B. megaterium YpeB-C structure reveals that G431 is located 

in the PepSY3 β13 - β14 connective loop, and it is not immediately obvious why substitution 

of glycine for alanine would destabilise the protein in the spore.  The hydroxyl group from 

Y411, on the other hand, is sufficiently close (2.7 Å) in the crystal structure to form a 

hydrogen bond with the backbone carbonyl oxygen atom of I377, which is part of the loop 

connecting PepSY2 and PepSy3.  Accordingly, this intra-molecular interaction may 

contribute towards the conformational stability of the PepSY3 domain.  Alternatively, Y411 

is solvent exposed and may be important in interacting with SleB or spore proteases, with 

disruption to this interaction resulting in proteolytic degradation of YpeB and SleB in the 

developing spore.  Similarly, Y254 can hydrogen bond with the backbone carbonyl oxygen 

atom of V219, which is located in the loop that precedes α-helix 1.  Again, this intra-

molecular interaction may contribute towards the structural stability of the domain, or solvent 

exposed Y254 may be involved in YpeB/SleB-stabilising protein interactions. 

 To conclude, the crystal structure of the C-terminal domain of the B. megaterium 

YpeB protein has been solved to 1.80 Å.  The objective moving forward will be to determine 

the structure of the full-length protein, with a view to revealing further insights to the precise 

function of this protein and the molecular mechanisms that underpin its role in regulating 

SleB activity in the spore. 
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Figure Legends 

 

Figure 1. Crystal structure of the C-terminal domain of B. megaterium YpeB.  (a) Ribbon 

representation of the YpeB-C structure.  The molecule is rotated 90o counter-clockwise in (b).  

The molecule is composed of three tandemly arranged PepSY domains (PepSY1, in orange 

[S220 – D284], PepSY2 in pale blue [I292 – R368], and PepSY3 in light green [S378 – 

L439]).  Residues Y254 and Y411, located within PepSY1 and PepSY3 respectively, which 

have been shown to be of functional importance in the orthologous B. anthracis YpeB 

protein6, are shown in stick representation.  (c) Secondary structure elements associated with 

YpeB-C amino acid sequence (generated by PDBsum; http://www.ebi.ac.uk/pdbsum/). 

 

Figure 2. (a) FATCAT flexible pairwise alignment of B. megaterium YpeB-C with 

Clostridium difficile YpeB-like protein (PDB: 4EXR).  The alignment has an optimised 

r.m.s.d of 2.49 Å when a single twist is introduced in the 4EXR structure, facilitating 

alignment with the YpeB-C PepSY2 and PepSY3 domains.  YpeB-C is coloured as in Figure 

1; 4EXR is coloured pink. (b) Molecular surface representation of YpeB-C coloured 

according to the local electrostatic potential, ranging from -3 kT/e in red (most negative) to 

+3 kT/e in blue (most positive).  The local electrostatic potential was calculated using the 

APBS Pymol plug-in16. 
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Table 1 Crystallographic data collection, phasing and refinement statistics 
 

 SAD dataset 
K2PtCl4 derivative 

Native Dataset  

Data collection   
Radiation Source Diamond (UK), I04 Diamond (UK), I04 
Wavelength (Å) 1.0721 0.9795 
Space group C2221 C2221 
Cell dimensions:   

a, b, c (Å) 52.77 108.85 85.73 53.21 110.10 85.81 
α, β, γ (o) 90.0 90.0 90.0 90.0 90.0 90.0 

Resolution (Å) 28.58 – 2.20 (2.32 – 2.20)1 43.63 – 1.80 (1.90 – 1.80)1 
Rmerge

2 (%) 8.7 (89.8) 6.0 (84.0) 
<I / σ(I)> 20.2 (3.5) 15.7 (2.5) 
Completeness (%) 99.9 (100.0) 99.9 (99.9) 
Redundancy 16.6 (16.3) 7.3 (7.5) 
Number of unique reflections 
Anomalous Completeness (%) 
Anomalous Redundancy (%) 
 

12,907 
100.0 (100.0) 
8.7 (8.3) 

23,741 
 

Phasing
3
 

Number of sites found  

Overall score (100 * BAYES-CC) 
Figure of Merit (SOLVE) 
Figure of Merit (RESOLVE) 
 

Density Modification
3
 

R-factor 
Map skew 
Corr. of local RMS density 
 

Refinement 

 
13 
51.7 
0.32 
0.62 
 
 
0.32 
0.18 
0.88 

 

Resolution (Å)  46.34 – 1.80 
Number of reflections used:   

Total  23,700 
Rfree set  1,997 

R cryst 
4/ R free 

5 (%)  19.5 / 22.7 
Solvent content, %  47.5 
Number of protein molecules in 
asymmetric unit 

 1 

Number of non-hydrogen of 
atoms in asymmetric unit: 

  

Protein atoms  1833 
ion  10 

Water atoms  100 
B-factor, (Å2):    

Average  53.7 
Wilson  30.0 

Ramachandran plot analysis, 
number of residues in: 

  

Favoured regions, %  97.36 
Allowed regions, %  2.64 

Disallowed regions, %  0 
R.m.s. deviations:   
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Bond lengths (Å)  0.008 
Bond angles (°)  1.109 

 
1 The statistics shown in parentheses are for the highest-resolution shell. 
2 Rmerge = (Σ hkl Σ i | Ii(hkl) - Imean(hkl)|) / Σ hkl Σ i Ii(hkl). 
3 As calculated by PHENIX software suite 
4 Rcryst =Σ hkl ||Fobs(hkl)| - |Fcalc(hkl)||/Σ hkl |Fobs(hkl)| 
5 R free is the same as Rcryst but for a random subset of reflections not included in the refinement, about 
10% of total reflections. 
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Figure 1. Crystal structure of the C-terminal domain of B. megaterium YpeB.  (a) Ribbon representation of 
the YpeB-C structure.  The molecule is rotated 90o counter-clockwise in (b).  The molecule is composed of 
three tandemly arranged PepSY domains (PepSY1, in orange [S220 – D284], PepSY2 in pale blue [I292 – 

R368], and PepSY3 in light green [S378 – L439]).  Residues Y254 and Y411, located within PepSY1 and 
PepSY3 respectively, which have been shown to be of functional importance in the orthologous B. anthracis 
YpeB protein6, are shown in stick representation.  (c) Secondary structure elements associated with YpeB-C 

amino acid sequence (generated by PDBsum; http://www.ebi.ac.uk/pdbsum/).  
204x277mm (300 x 300 DPI)  
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Figure 2. (a) FATCAT flexible pairwise alignment of B. megaterium YpeB-C with Clostridium difficile YpeB-like 
protein (PDB: 4EXR).  The alignment has an optimised r.m.s.d of 2.49 Å when a single twist is introduced in 
the 4EXR structure, facilitating alignment with the YpeB-C PepSY2 and PepSY3 domains.  YpeB-C is coloured 
as in Figure 1; 4EXR is coloured pink. (b) Molecular surface representation of YpeB-C coloured according to 

the local electrostatic potential, ranging from -3 kT/e in red (most negative) to +3 kT/e in blue (most 
positive).  The local electrostatic potential was calculated using the APBS Pymol plug-in16.  

88x52mm (300 x 300 DPI)  
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