17 research outputs found

    Primordial Stochastic Gravitational Wave Background Anisotropies: in-in Formalization and Applications

    Get PDF
    Primordial non-Gaussianities of the scalar(tensor)-tensor-tensor type supporting a non-trivial squeezed component are known to induce anisotropies in the stochastic gravitational wave background. We derive the explicit form of such anisotropies by making use, for the first time in this context, of the in-in formalism for cosmological correlation functions. After illustrating the general method and using it for the minimal single-field slow-roll case, we apply it to multi-field models, providing both a tree-level and a one-loop example. First, we make contact with previous results on anisotropies due to the presence of an extra spin-2 field during inflation. Secondly, we calculate the 1-loop scalar-tensor-tensor three-point function in the context of so-called supersolid inflation. The corresponding gravitational wave anisotropy is induced atop a gravitational signal that may be sufficiently large for detection.Comment: 33 pages, 5 figure

    Testing the early universe with anisotropies of the gravitational wave background

    Get PDF
    In this work we analyse in detail the possibility of using small and intermediate-scale gravitational wave anisotropies to constrain the inflationary particle content. First, we develop a phenomenological approach focusing on anisotropies generated by primordial tensor-tensor-scalar and purely gravitational non-Gaussianities. We highlight the quantities that play a key role in determining the detectability of the signal. To amplify the power of anisotropies as a probe of early universe physics, we consider cross-correlations with CMB temperature anisotropies. We assess the size of the signal from inflationary interactions against so-called induced anisotropies. In order to arrive at realistic estimates, we obtain the projected constraints on the non-linear primordial parameter FNLF_{\rm NL} for several upcoming gravitational wave probes in the presence of the astrophysical gravitational wave background. We further illustrate our findings by considering a concrete inflationary realisation and use it to underscore a few subtleties in the phenomenological analysis.Comment: 47 pages, 16 figure

    Third EuCAPT Annual Symposium

    No full text

    Primordial gravitational waves in non-minimally coupled chromo-natural inflation

    Get PDF
    We consider inflation driven by an axion-like particle coupled to an SU(2) gauge sector via a Chern-Simons term. Known as chromo-natural inflation, this scenario is in tension with CMB observations. In order to remedy this fact and preserve both the symmetries and the intriguing gravitational wave phenomenology exhibited by the model, we explore the non-minimal coupling of the axion-inflaton to the Einstein tensor. We identify regions of parameter space corresponding to a viable cosmology at CMB scales. We also highlight the possibility of a non-trivial chiral gravitational wave signal at small scales.</p

    Primordial stochastic gravitational wave background anisotropies: In-in formalization and applications

    No full text
    Primordial non-Gaussianities of the scalar(tensor)-tensor-tensor type supporting a non-trivial squeezed component are known to induce anisotropies in the stochastic gravitational wave background. We derive the explicit form of such anisotropies by making use, for the first time in this context, of the in-in formalism for cosmological correlation functions. After illustrating the general method and using it for the minimal single-field slow-roll case, we apply it to multi-field models, providing both a tree-level and a one-loop example. First, we make contact with previous results on anisotropies due to the presence of an extra spin-2 field during inflation. Secondly, we calculate the 1-loop scalar-tensor-tensor three-point function in the context of so-called supersolid inflation. The corresponding gravitational wave anisotropy is induced atop a gravitational signal that may be sufficiently large for detection

    Enhancing gravitational wave anisotropies with peaked scalar sources

    No full text
    Gravitational wave (GW) backgrounds of cosmological origin are expected to be nearly isotropic, with small anisotropies resembling those of the cosmic microwave background. We analyse the case of a scalar-induced GW background and clarify in the process the relation between two different approaches to calculating GW anisotropies. We focus on GW scenarios sourced by a significantly peaked scalar spectrum, which are frequently considered in the context of primordial black holes production. We show that the resulting GW anisotropies are characterised by a distinct frequency dependence. We explore the observational consequences concentrating on a GW background enhanced in the frequency band of space-based GW detectors. We study the detectability of the signal through both cross-correlations among different space-based GW detectors, and among GW and CMB experiments

    Enhancing gravitational wave anisotropies with peaked scalar sources

    Get PDF
    Gravitational wave (GW) backgrounds of cosmological origin are expected to be nearly isotropic, with small anisotropies resembling those of the cosmic microwave background. We analyse the case of a scalar-induced GW background and clarify in the process the relation between two different approaches to calculating GW anisotropies. We focus on GW scenarios sourced by a significantly peaked scalar spectrum, which are frequently considered in the context of primordial black holes production. We show that the resulting GW anisotropies are characterised by a distinct frequency dependence. We explore the observational consequences concentrating on a GW background enhanced in the frequency band of space-based GW detectors. We study the detectability of the signal through both cross-correlations among different space-based GW detectors, and among GW and CMB experiments.Comment: 28 pages, 6 figure

    New universal property of cosmological gravitational wave anisotropies

    Get PDF
    The anisotropies of the stochastic gravitational wave background, as produced in the early phases of cosmological evolution, can act as a key probe of the primordial universe particle content. We point out a new universal property of gravitational wave anisotropies of cosmological origin: for adiabatic initial conditions, their angular power spectrum is insensitive to the equation of state of the cosmic fluid driving the expansion before big-bang nucleosynthesis. Any deviation from this universal behaviour points to the presence of non-adiabatic sources of primordial fluctuations. Such scenarios can be tested by gravitational wave detectors operating at a frequency range which is fully complementary to CMB experiments. In this work we prove this general result, and we illustrate its consequences for a representative realisation of initial conditions based on the curvaton scenario. In the case of the simplest curvaton setup, we also find a significant cross-correlation between gravitational wave anisotropies and the CMB temperature fluctuations. There is a fourfold enhancement vis-\`{a}-vis the purely adiabatic scenario. We discuss the implications of our findings for identifying the origin of the (cosmological) gravitational wave background when, as is often the case, this cannot be determined solely on the basis of its spectral shape.Comment: 14 pages, 4 figures. Version accepted at PR
    corecore