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Abstract. In this work we analyse in detail the possibility of using small and intermediate-
scale gravitational wave anisotropies to constrain the inflationary particle content. First,
we develop a phenomenological approach focusing on anisotropies generated by primordial
tensor-tensor-scalar and purely gravitational non-Gaussianities. We highlight the quantities
that play a key role in determining the detectability of the signal. To amplify the power of
anisotropies as a probe of early universe physics, we consider cross-correlations with CMB
temperature anisotropies. We assess the size of the signal from inflationary interactions
against so-called induced anisotropies. In order to arrive at realistic estimates, we obtain
the projected constraints on the non-linear primordial parameter Fyp, for several upcoming
gravitational wave probes in the presence of the astrophysical gravitational wave background.
We further illustrate our findings by considering a concrete inflationary realisation and use
it to underscore a few subtleties in the phenomenological analysis.
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1 Introduction

The advent of laser interferometers has opened up a new era for gravitational wave (GW)
astronomy. From the very first direct detection [1] of a GW event in 2015 we have learned
precious lessons in stellar evolution and astrophysics. The growing number of GW events
detected also provides the ideal testing ground for general relativity. In this sense, the
GW170817 event and its optical counterpart have been especially consequential [2-4]. Oper-
ational and upcoming GW detectors hold the potential to bring about transformative changes
also in cosmology and the particle physics of the early universe. The increasing number and
sensitivity of laser interferometers (LIGO /Virgo/Kagra, LISA, Taiji, Einstein Telescope(ET),
Cosmic Explorer (CE) to mention but a few), together with the possibility of detecting GWs
at intermediate scales via pulsar timing arrays (PTA) puts us in the enviable position to
access key information on cosmological GW sources and, possibly, distinguish their signal
from the astrophysical GW background.

Mechanism for GW production are abound in the early universe [5]. Gravitational
waves are a universal prediction of inflation and may also result from pre-heating dynamics,
the energy loss of cosmic strings via gravitational radiation, and first order phase transitions



(this typically requires beyond-the-Standard-Model physics). In this work we will focus on
the stochastic gravitational wave background (SGWB) from inflation. We shall be interested
in probing inflationary (self)interactions, and thus the particle content of the very early
universe, through GW probes at intermediate and small scales (from the 10~ Hz of PTAs
to the 10kHz of, for example, LIGO).

A GW signal at PTA scales or at the frequency range accessible via laser interferometers
is typically associated to a multi-field or multi-clock inflationary realisation.! Detection of a
primordial SGWB of inflationary origin would then by itself be strongly suggestive of a rich
inflationary field content. In this manuscript we take the analysis one step further and detail
on how one may use GW probes to test inflation beyond the “standard” power spectrum (i.e.
beyond the quadratic Lagrangian). Anisotropies of the GW spectrum are the key observables
here, and in particular those engendered by primordial tensor-tensor-scalar (TTS) and purely
GW (TTT) non-Gaussianities.

Primordial non-Gaussianities are well constrained on large scales by cosmic microwave
background (CMB) observations [9, 10]. The physics of the intermediate and small scales
constraints is also very interesting. As show in [11, 12], propagation effects suppress e.g. the
primordial TTT signal in most of the momentum configurations. Let us offer an intuitive
understanding of such suppression. Direct access to the bispectrum at intermediate/small
scales requires that the modes have all entered the horizon during radiation domination and
thus have accumulated a history of propagation through structure. Given that the momenta
are to be different in view of the overall momentum conservation, different modes have
different propagation history, so much so that this “washes out” any initial correlation, i.e.
any correlation due to the initial conditions set by inflation.

A proven way to get around this suppression is to consider specific momenta configu-
rations, such as the ultra-squeezed one [13]. In this configuration there is one long (up to
horizon-size) mode and two short ones.? This implies that only small modes can be accessed
directly, but it also guarantees a much milder suppression: a very long mode does not suf-
fer suppression effects and the two short ones may have a much more similar propagation
history, thereby avoiding the wash out effect. The anisotropies we shall study in this work
probe precisely this momentum configuration and therefore provide a precious handle on
non-Gaussianities at intermediate and small scales.

We will explore the constraining power of anisotropies on primordial physics in two
steps. First, we will consider anisotropies due to non-trivial squeezed primordial TTS and
TTT bispectra. Second, we will study the cross-correlation of such GW anisotropies with
temperature anisotropies of the CMB. As we shall see, the latter observable can take us a
long way towards verifying the primordial nature of possible GW anisotropies even in the
presence of a large stochastic GW background of astrophysical origin.

We find it worthwhile in this manuscript to first provide a phenomenological, agnostic,
approach to anisotropies from primordial long-short mode couplings, without committing to
any specific inflationary model. It will allow us to show what is typically expected in terms of
observables and single out the key quantities that determine the likelihood for a given signal

!The proposed Big Bang Observer (BBO) is an exception in that it might be able to detect even a signal
from single-field slow roll models provided that the tensor-to-scalar ratio r is close to the current combined
Planck + BICEP2/Keck Array BK15 upper bound of r < 0.056 [6]. There are interesting proposals for
single-field models generating a GW signal detectable at small scales. One such mechanism [7] postulates the
existence of a non-attractor phase followed by an attractor solution [8].

2 Another momenta configuration that can be probed is the folded one, see for example [14].

3For alternative examples of probes of primordial non-Gaussianities, see e.g. [15-26].



to be observed. Besides the usual suspects, i.e. the non-linear parameters F{, F{ and the

tensor-to-scalar ratio r, we will see how e.g. cross-correlations are also rather sensitive to the
angular dependence of primordial bispectra.

Our analysis would be incomplete without a detailed example of an inflationary mech-
anism that supports a GW signal on small scales as well as a sufficiently large primordial
non-Gaussian amplitude to give the leading contribution to GW anisotropies, beyond the
ever-present induced component [27-30]. To this aim, we employ an EFT formulation of
the inflationary Lagrangian comprising an extra® spin-2 field non-minimally coupled to the
inflaton [31, 32]. Such coupling is necessary to weaken unitarity bounds on the spin-2 parti-
cle mass range (see e.g. [33, 34]), thus allowing it to have a small (compared to the Hubble
rate H) mass.

This paper is organised as follows. In section 2 we briefly review induced anisotropies
and compare them with those generated by primordial non-Gaussianities. We give a rule
of thumb criterion to estimate the size of each contribution. We study the case of both
monopolar and quadrupolar-type contributions to GW anisotropies from a TTS correlator,
providing both the general result and its simplified analytical expression in the scale-invariant
case. The contribution to anisotropies due to a primordial TTT correlation is also scrutinised.

Section 3 is devoted to cross-correlations with the CMB temperature anisotropies. After
reviewing the induced contribution, we focus on cross-correlating the T'TS term with the CMB
and derive the projected constraints on F§ from a range of GW probes: PTAs, LISA& Taiji,
ET&CE, and BBO. We also account for the presence of an astrophysical gravitational wave
background (AGWB), which allows us to highlight the power of cross-correlations: a primor-
dial signal may be detected even if the AGWB dominates over the primordial SGWB. The
TTT contribution to cross-correlations is also analysed.

In section 4 we consider a specific inflationary realisation and show how, interestingly, in
this specific case it is the TTT primordial correlation that provides the leading contribution
both at the level of the auto- and the cross-correlation. This is true despite the factor of r
suppression any TTT correlator inherits with respect to its TTS counterpart. We find that
an instrument such as BBO can deliver a percent level relative error on F{ in this model.

We discuss our findings and comment on future work in section 5.

2 SGWRB anisotropies

Cosmological backgrounds of gravitational waves (CGWB) are typically characterised in
terms of the spectrum of their normalised energy density per logarithmic wavenumber® in-
terval [35],

1 dpcw
Q k)= — 2.1
GW( ) pcr dlnk Y ( )

where pgw is the energy density of GW and p.; is the critical energy density. In general the
energy density of the CGWB will not be uniform across the sky. Allowing for anisotropies
in the energy density we can write the above quantity as

Qaw (k) = Qaw (k) {1 + 417r/d2ﬁ 5GW(k,ﬁ)} ) (2.2)

4That is, beyond the massless spin-2 field of general relativity.
SHere k is the comoving wavenumber, related to the present day physical frequency f by k = 27 fao, with
ap the scale factor at present.



where dagw and Qgw denote the anisotropic and isotropic components of the energy density
respectively. For a generic cosmological gravitational wave background, these anisotropies can
arise from (i) propagation in the perturbed universe, and (ii) an inhomogeneous production
mechanism. We shall refer to these anisotropies as ‘induced’ and ‘intrinsic’, respectively.

2.1 Induced anisotropies

The induced anisotropies arise from the propagation of GW through the large scale scalar
perturbations of the universe.® Note that such anisotropies are universal in nature, in the
sense that they are rather model-independent. These anisotropies have been studied using
the standard Boltzmann” formalism in [27-29, 36]. Similarly to what happens with the CMB,
one finds that the SGWB is affected by both the Sachs-Wolfe (SW) and Integrated Sachs-
Wolfe (ISW) effects. On large angular scales, the dominant contribution is given by the SW
term which can be written as [28, 29]

SEW [4 B 8anGW(/€)] / (d3q o—idiva | gc@ (2.3)

ind dlnk 2m)3 3

Note that, in contrast to [28, 29] where the notation is reversed, here we denote the wavenum-
ber of the large-scale perturbations by ¢ and the GW wavenumber by k.

2.2 Intrinsic anisotropies from primordial non-Gaussianity

The instrinsic anisotropies of interest here are those arising from large primordial non-
Gaussianities in the squeezed limit, i.e. primordial bispectra of the form (yx, Yk, Xq—0)-
Here X denotes a long wavelength mode of either a scalar or tensor perturbation while 7y, ,
are the short wavelength tensor modes which we take to be at interferometer scales (these
modes re-enter the horizon during radiation domination). Let us begin with the case where
the long mode Xg corresponds to the long wavelength mode of the primordial curvature per-
turbation ¢. The existence of this coupling between the long modes (4 and the short modes
~k modulates the primordial power spectrum as [17, 18, 37-40],

d3q i A tts
pmod (e x) = ST PA(k 1+/ B iax pAitts g , 2.4
ol ( ) ? ’y( ) a<k (27‘(’)3 NL ( Q)C(q) ( )
where
Bjs(k—q/2, -k —q/2,q)
F)\,ttS(k7 q) _ tts ’ ) 7 (25)
NE Pe(q) Py (k)

and the primordial bispectrum Bys(ki, ko, k3) in the squeezed limit is defined as

<71i\171/2;<k3—>0>/ = 6 Bl (1, ko, k3) . (2.6)

The prime here denotes the fact that we have omitted the factor of (27)% §®)(k; + ko + k3)
that ensures momentum conservation. The quantity in eq. (2.4) is made up by the standard

SThere is also a contribution from the large scale tensor peturbations but similar to the CMB, this is
subdominant compared to the contribution from the scalar perturbations [28, 29].

"This formalism relies on the geometrical optics approach, allowing us to treat GW as streams of gravitons
propagating along the null geodesics of the perturbed background (see the dicussion in [27] for more on this).



isotropic contribution and a second one, there only in the presence of a modulation by a
long scalar mode supported by a non-zero scalar-tensor-tensor bispectrum. The Z-dependent
term is evaluated within a volume having linear dimension smaller than the wavelength of the
long mode. A detailed derivation of eq. (2.4) for the analogous case where the long-wavelenth
perturbation is a tensor mode can be found in section II of [13]. This derivation is based
on and similar to the corresponding one for a scalar two-point correlation modulated by a
long-wavelength tensor perturbation, presented for the first time in [37] (see egs. (5)-(6) and
appendix A therein). The starting point of the derivation is the tensor two-point function
(see e.g. eq. (8) of [13]), in combination with the expression for the correlation between two
Fourier modes of the tensor perturbation in the presence of a long-wavelength realisation of
the tensor field, as given e.g. in eq. (6) of [13] (the latter was presented for the first time,
for the scalar case, in [17]). The long-wavelength tensor perturbation induces a correlation
between different (short-wavelength) Fourier modes, proportional to the amplitude of the
long-short wavelength coupling, as well as to the amplitude of the long-wavelength mode
itself. These results are valid in the presence of a large hierarchy of scales between the short
and the long-wavelength modes.

Note that while in principle it is possible to have polarisation-dependent power spectra
and bispectra and hence Fli‘li’tts #* FI(\Ii’ttS for the different helicities A1 # Ao, this shall not be
the case for the inflationary models we will consider here. Hence, in what follows further we
will write Fgfts = FY¥ and eq. (2.4) becomes,

3

Bg
1+/q<<k(27r)36q ik, q)¢(a)] - 2.7)

The isotropic and anisotropic® components of the energy density can then be expressed in
terms of this primordial tensor power spectrum as [40]

Pt (k, x) = Py (k)

2

Qs 10) = 13 T (6 10) P s ) (2.8)
and
GW /7. ~\ _ d*q —idi-q tts
6tts (k, 77,) - 3 e FNL(k> Q)C(q_j ’ (29)
g<k (2)

where 79 denotes the conformal time at present, 7 (k, 7o) is the tensor transfer function [41],
7 =k/k and d = —dn with d = ny — ni, being the conformal time elapsed from horizon-entry
of the mode k to the present. We also consider here the anisotropies generated from the
modulation of the power spectrum by a long wavelength tensor mode [13],

Piod(k, x) = Py (k)

d3q o
1 +/ — !Xt (kg Ma)ed (§)ninl | | 2.10
a<k (27[_)3 NL( )z)\: ( ) 2]( ) ( )
ttt

where (once again we have dropped the polarisation dependence in F{7 ),

_ Biii(k —a/2,-k +q/2,q)
P (q) P32 (k)

ik, q) : (2.11)

®In the context of the Boltzmann formalism for GW [27-29], these anisotropies are captured by the initial
condition term.



and Byt (ki, ko, k3) is the squeezed-limit primordial bispectrum defined as
e o) = =022 €3 (ks) ks k] Bsi (k1 ko, ks) . (2.12)
Thus, the anisotropies in this case are given by,

d3q o
5 k,h) = _/ —zdn qFttt k,q l d Aind 213
ttb ( ) <k (277) Z’Y j ( )

From the above discussion, one can expect the typical amplitude of these anisotropies to be

md NV

Ot ~ &tﬁ As (2.14)

GW ttt
5ttt LV rAg,

where Ag denotes the amplitude of the scalar power spectra on CMB scales and r is the
tensor-to-scalar ratio. Thus, if the primordial bispectrum in the squeezed limit is large
enough (Fi, > 1), the intrinsic anisotropies can dominate over the induced anisotropies.
Furthermore, when F{§ ~ F{{ (e.g. as is the case for the solid inflation model of [42, 43]) we
will have 6Gy > o5 We will explicitly evaluate these two contributions to the anisotropies
in section 2.3 where we will also elaborate on the effects of the angular dependence of

F{(k,q). Such a dependence will turn out to be particularly important in calculating
the cross-correlation of these GW anisotropies with the CMB temperature anisotropies in

section 3.2.

2.3 Angular power spectra of SGWB anisotropies

To compute the angular power spectrum of the SGWB anisotropies we first expand them in
spherical harmonics,

5 = [ e (@)Y @) (2.15)
The rotationally invariant? angular power spectra are then defined as
<5e Wézl ’ > = 5(@/(5mm/C£GW. (216)

Induced anisotropies

For the induced anisotropies, eq. (2.3), one finds [28, 29]

n d1n Qaw (k)1? 2 . 4
CGW d_ 4_61?/;]()} ;/quq]g(qd)Q'g (q) 5 (2.17)

where j, are the spherical Bessel functions of the first kind and P denotes the primordial
curvature power spectrum. The factor of 4/9 is a consequence of the relation between the
curvature perturbation ¢ and the scalar potential ® on super-horizon scales during the radi-
ation dominated era. To evaluate eq. (2.17) analytically, we assume a scale invariant power
spectrum for the curvature perturbation P:(q) = (27%/¢3)As, as well as a scale invariant

9See [44] for a discussion of intrinsic anisotropies of the CGWB in a statistically anisotropic background.



spectrum of GW (i.e. 0In Qaw(k)/0Ink = 0). We can then use the identity for the spherical
Bessel functions,

x dx | 1
/0 ?34?(35) =2+ ) (2.18)

to get

: 1287 Ag
OGWoind 2245 2.19
¢ 90(¢ +1) (2.19)

We will now move on to the calculation of the angular power spectrum for the intrinsic
anisotropies of the CGWB.

Anisotropies from (yv() bispectrum

Here, we shall consider two cases. First we consider the case where the TTS bispectrum is
independent of § - l;:, i.e. the angle between the long wavelength scalar mode (;—0 and the
short wavelength GW, ~;. The second case of interest is a scenario where the bispectrum
has a quadrupolar angular dependence in ¢ - k. This kind of angular dependence can arise
in the inflationary scenarios presented in [42, 43, 45] as well as in the model we consider in
section 4.

Monopolar TTS

Let us begin with the case where the parameter FYf defined in eq. (2.5) has no angular
dependence in ¢ - k, i.e. we write

Fi(k,q) = Fxg(k, ) - (2.20)

The GW anisotropies of this form of the bispectrum have been previously considered in
ref. [40] and the result, starting from eq. (2.9), can be written as

2 . tts
vt == [ qdqjilad R K Pila). (221)
T Jegk

This can be calculated analytically assuming for simplicity a scale-independent ﬁ{{fﬁ and a
scale invariant P as before. We find

aWits _ s\ 2 2TAs
Civt ~ () eyt (2.22)

As expected, we find the same scaling with ¢ as for the induced anisotropies,

3 ~iis) 2 ;
CZGW,ttS — <8 IE&SJ) CZGW;IHC[ ) (223)

Thus, for Fﬁtf > 1, we find that the intrinsic anisotropies dominate, as anticipated in

eq. (2.14).



Quadrupolar TTS

Next, we consider the case where F{{ has a quadrupolar angular dependence in g - k. In this
case we parametrise Fi{f as

Rk, q) = F( ZYW VYo (@) = FEPa(q- k), (2.24)

where Ps is the second Legendre polynomial. The angular power spectrum of the anisotropies
for such an angular dependence is given by,

Gw, L1— Hrir
COWHs _ 1672 3 il L2h%L12h%Lg2ﬁ’ (2.25)
Ly,Lo

where the sum is over Ly, Ly = { — 2,¢,{ + 2, the quantity hy,¢,¢, is defined in terms of the
Wigner 3j symbols as

201 +1)(205 +1)(205+1) (44 b5 ¢
h€1€2€35\/( ! )( 247T )( & )<01 02 03)7 (226)
and
2 . . ~tts
Hir, = 5em /<<k ¢*dq jr, (qd)jL, (qd) T (k, 9)* Pc(q) - (2.27)
q

The result up to eq. (2.25) was previously derived in [44]. As before, we now obtain an
analytic expression for this auto-correlation: for ¢ > 2, this can be estimated using the
identity [46],

a)\ F(}\)F(E—I-l/g)\—l-l )

/OOO dz J,(azx)J,(ax)z™ = (2.28)

9\ F(/L*V;)\*Fl)r(*ﬂ‘i’lé‘i’)\“rl)F(Hﬁ‘rl/;)\‘i’l) ’
[for Re(n+v+1) >ReA >0, a > 0]

where J, are the Bessel functions of the first kind whose relation to the spherical Bessel

functions is given by
, P
Jn(T) = %Jn—&-l/Z(x) : (2.29)

CGWtts 27 (F{&)%As
¢ T 5 (U=2)(L+3)°

We finally get
(2.30)

Anisotropies from (yvy~) bispectrum

Let us now compute the intrinsic anisotropies from the TTT bispectrum. Starting from
eq. (2.13) and assuming that Fi{(q,k) = F{{{(g, k), we can obtain the spherical harmonic
coefficients for §GyV using the following relation [47, 48],

Y (g nind e= i = —(2m) 47/ (q) S (—i) H (q(d)‘? Y (@Yiu(@). (2.31)
LM :
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Figure 1. The auto-correlation of the SGWB anisotropies as a function of ¢ plotted for |13'1§f]f\ =
|| = 103 and the tensor-scalar ratio r = 0.05.

This gives

3 .
Y = e [ 3 [ e P () ). @3)
ts=%2

Thus, the angular power spectrum of these anisotropies is given by

je(qd)?
(gd)*

(2.33)

0— 1)l +1)(0+2 .
C;}W,ttt _ ( ) (Qﬂ- )( ) / q2qu§tﬁ(k,q)2P7(q)
(/558

s=+2

Once again, an analytic form (for ¢ > 2) can be obtained by assuming a scale independent
FYt and a scale invariant Py = (27%/¢®)r Ag,

CSWttt 4m (FIEItIE)Q rs
l

= -2l 13’ (2:34)

where we have used the identity

o jilx) 4 (0 —2)!
/0 e K:c5 T+ 3)(0—2)° (2.35)

In figure 1 we plot the angular power spectra calculated in this section for a represen-
tative value |F{| = |Fi| = 10% and taking » = 0.05. As anticipated in eq. (2.14), for
|Eng| > 1, we see that the angular power spectra for the intrinsic anisotropies are larger
than the induced ones by roughly a factor (F{)? in the TTS case and r(F{)? in the TTT
case. Thus, for inflationary models with a significant enhancement of squeezed primordial
non-Gaussianity, these anisotropies will be dominant.



3 CMB-GW cross-correlation

The GW anisotropies considered in the previous section arise from the modulation of the
primordial tensor power spectrum by the long wavelength scalar/tensor modes and will be
correlated with the scalar/tensor contributions to the CMB temperature anisotropies §T.10
Here, we calculate this cross-correlation and for the TTS case we comment briefly on the
dependence of this cross-correlation on the angular structure of the primordial bispectrum.
As in the previous section, we provide analytic estimates wherever possible by assuming a
scale independent Fyy, and Pr(q) = (2n%/¢®) As.

3.1 Cross-correlations with induced anisotropies

Since the induced anisotropies are sourced by the large scale curvature perturbation, they
are also correlated with the CMB temperature anisotropies. Their cross-correlation with the
CMB is given by

(S5 Oprms) = Opr Oy C Y~ 110 (3.1)
with
GW-T,ind _ 16 2 . ,
C, > T dq je(qd)je(qriss) Pe(q) , (3.2)

assuming a flat spectrum for Qgw. To get to eq. (3.2), we have assumed that the temperature
anisotropies are given by the SW term which is a good approximation on large angular scales.
Its spherical harmonic coefficients are given by [50],

3
= T [ i B)ioma)C(0). (33)
where rigs denotes the comoving distance to the last scattering surface. Detailed numerical
analyses of this cross-correlation highlighting the relative contribution of the various terms
(SW, early and late ISW, Doppler etc.) and the effects of pre-recombination physics have
been recently carried out in refs. [51] and [49] respectively. For our purposes, it suffices to
take only the SW term eq. (3.3) since this is the main contribution to the cross-correlation
(intrinsic as well as induced) on large angular scales. We can now evaluate this correlation
analytically as

_ 327 dq . .

CVT =g [ S juadians). (3.4)
15 q<k 4

For the low multipole range (¢ < 20), a good approximation can be obtained by letting

d = 155 and using the identity eq. (2.18) to get

327 A
GW-T , 241 S
Ce T15 200+ 1) (3:5)

90ne could also consider correlating the SGWB anisotropies with the E-mode polarisation of the CMB.
Although this turns out to be smaller than the induced GW-T cross-correlation by at least one order of
magnitude [49], including it can help put tighter constraints on Ffs. As for the cross-correlation with CMB
B-mode polarisation, this will be non-zero only when there is parity violation, similar to the CMB case where
(TB) = 0 if parity is preserved in the theory.
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If instead one does not make this approximation, one can derive a more accurate but com-
plicated expression in terms of the Gamma functions and the Hypergeometric function o F}
using the identity [46],

a? F(;H—VEM-I)

Oodel, ax)J,(bx)x* =
/0 (az)Ju(bz) 2 by—A+1p(%ﬂ+l)p(y+ 1)

A+l v—p—-A+1 2
><2F1<“+” tlyvop— At ;1/+1;a>, (3.6)

2 ’ 2
[for Re(u+v—A+1)>0, ReA> -1, 0<a < b

With this, from eq. (3.4) we find

8/2 Tlss \ ¢ ') 1 3 1l
GW-T Iss Iss
= Ag () —L R |-z, 0+ 2, ) .
Cg 15 S’( d ) F(Z %)2 1 90" 27 42 (37)

Thus we see that this cross-correlation decays sharply with ¢ due to the factor (rys/ d)e , as
also pointed out in refs. [40, 51]. This suppression arises from the fact that the time when the
gravitons begin their free streaming n;, is different from that of the CMB photons 74, thus
riss/d < 1 (recall that d = 1y —ny, for the short mode k so n, corresponds to a conformal time
deep within radiation domination, whereas ris = 19 — 7Miss). As a result, these anisotropies
become uncorrelated on small scales (large ¢). Since d & 1, this also explains why the
estimate of eq. (3.5) works well for small ¢ but fails for £ = 20 (see figure 2). To see the
explicit scaling with ¢ we use the following numerical fit,

ING) 1 3 rf 0.8
[ — F R . — j 2 S — .
r(t+3)° 1( 25T | = W 0.0 (38)
which gives
¢
_ 1
CEW-Titts (ZSS) 5 (3.9)

A similar behaviour will also be present for the TTS cross-correlation, as we shall see below.

3.2 Cross-correlations with anisotropies from (y~(¢) bispectrum

Monopolar TTS

We consider here the CMB-GW cross-correlation for the intrinsic CGWB anisotropies where
the long-wavelength mode is a scalar. For the monopolar F{§ we have

_ 2 . ) ~ e
ogWT = = / ¢*dq je(qd)je(qriss) FiE (k, q) Pe(q) (3.10)
57[' qkk

which was previously derived in [40]. Similar to the previous section, we can now analytically
evaluate this cross-correlation,

1 AT s dq . .
CiWV T = — i Ag / X ji(qd)je(qriss) - (3.11)
5 gk 4
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The approximation with d = i gives

_ 47 ~ Ag
CEW-T  “Tptts <05 3.12
¢ 5 NEop(r+1) (3.12)

The full result with d # ri5s and using eq. (3.6) is instead
3/2 . ns Y T(0) 1 3 r
cOW-T - T_fis g (1) o Py =5 Gl S ) 3.13
¢ 5 NL4S d F(Z—F%)Z 1 9 +27d2 ( )

We see that the cross-correlation for the monopolar TTS scales with £ in exactly the same
manner as the cross-correlation for the induced anisotropies,

_ 3 Yy
CZGW T, tts _ (8 &tﬁ) CEW T,ind . (3.14)

Quadrupolar TTS

For the quadrupolar case we have,

Gre

GW-T,tts __ )
CE = 47'('2[/:1 h2L€m’ (315)
where the sum is over L = ¢ — 2,/,/ + 2 and the function Gy, ¢, is defined as
2 . . =
Guty = 5~ / ¢*dq je, (ad) e, (ar1ss) FYE (K, @) P (9), (3.16)

and hy,s,0, was defined in eq. (2.26). The result eq. (3.15), previously derived in [44], can
now be analytically estimated using eq. (3.6) to get

3/2 frtts A 14
GW T, tts T NLAS [ Tlss Tlss Tlss
= s = — — —1 — + 1) AF, 1
C 20 (d)(d )(d*) o (3.17)

where AF) is given by

_ T
Afy= T'(¢+3/2)

1 3 7l 1 3 7l
L+ 1)2F1 (—2,€;€+ 2;;;) — oF) (2,£;£+ 2;5525')] . (3.18)

The function AFy is well fit by

0.2
Thus, the C’ZG W=THS for the quadrupolar case scales with ¢ as
¢
_ 1
COW-Titts (Tss) e (3.20)

From the above results we notice the familiar (ri/d)’ suppression that we have seen pre-
viously in eq. (3.7) and eq. (3.13) for the induced and monopolar TTS anisotropies, thus
the cross-correlation again decreases as we go towards the smaller scales. However from
eq. (3.17), we also see that for the quadrupolar case when d — rig, this cross-correlation
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Figure 2. The ratio C’ZGW_T /1/ CeGWCET plotted for the monopolar and the quadrupolar TTS cross-

correlation. The corresponding ratio for the induced anisotropies follows the same curve as the one
for the monopolar TTS.

does not increase, instead it drops to zero. Physically, this can be understood from the fact
that the source term for the GW anisotropy is locally a quadrupole, whereas the source term
for the CMB is a monopole. Therefore, if the sources operate at the same point in space,
their cross-correlation will be zero (orthogonality of the Legendre polynomials Pg(l:l - ) and
Pu(k - §) for £ # ). A further point of difference is that this cross-correlation decays more
slowly compared to the monopolar one owing to the term proportional to (£ + 1) in AF}.

Overall, from the results of this section one can expect that the cross-correlation for
the quadrupolar TTS will be smaller compared to the one for the monopolar T'TS which will
have important consequences for cross-correlation-based observations/constraints on CGWB
anisotropies. We can understand why this is to be expected by looking at the expression for
the relative error in estimating the individual CFV =" (e.g. see [52]),

crregw Y2

(20 +1)(CgV T2

SCEW-T o (3.21)

The ratio C’erfT /7/ C?WC;F T is plotted in figure 2 for the monopolar and the quadrupolar

cross-correlations. In the low ¢ range which is the relevant range for GW detectors,'! we

have (C’EW*T)2 ~ CZGWC}T for the monopolar TTS, whereas for the quadrupolar case we
have (C’IZG'W_T)2 < C'EGWC’ET. Thus, based on the above considerations, we expect cross-
correlations to be more effective in the case of the monopolar TTS as compared to the
quadrupolar TTS. We confirm this in the following section.

"Even though the ratio wafT /A/CEWCTT increases initially for the quadrupolar case, higher multipoles
do not offer any improvement on the constraints. This is due to the fact that the angular resolution of
GW detectors is quite poor and we typically have CzGW ~ Ner, i.e. a noise dominated map with the N[GW
increasing quite rapidly with ¢ whereas the signal typically decreases. Thus, in practice one is limited to
Lmax ~ 15-30 (e.g. see [53, 54] for ground-based networks and LISA, and see figure 3 for other examples).
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3.2.1 Projected constraints on F’f{f“f

We now estimate the error in the measurement of F&tﬁ using a joint auto- and cross-correlation
measurement. The Fisher matrix in this case is given by [44, 55],

zmax X Y
oC -1 90C
Fj=> L(6) 5, (3.22)
X i 99 ( ) 09;

where X, Y = {TT,GW,GW-T} and g; are the parameters being measured. The elements of
the matrix % are

(CET)Z (CeG‘rW—T)Q CETCEGW_T
G=-—— | (CFVT)2 (CFW)? cewWogWT : (3.23)
CFTCEN=T CEWegWT L(CEVTTY + JOFTOEY

The error is then estimated as Af; = \/(F~1);; with

T, 27ds
T 20+ 1)
CEW = ogWots o ofWoind L NEW (3.24)
COW=T _ gGW-Tits | (GW-Tind

with the N7V being the noise angular power spectra of the detector network being used for
the measurement (figure 3). The calculation of the NFW is based on the formalism of [54] and
employs the associated code schNell.'> The NFW for ET-CE were already calculated in [54]
and following [44] we have adapted this code to calculate the N&W for BBO, LISA-Taiji and
SKA. The details of their detector configurations and noise curves are described below.

BBO

We consider the full BBO configuration with 4 LISA-like constellations, 2 of which will be
arranged as a six-pointed star. In addition there will be 2 outer constellations trailing and
leading the star constellation by 120° in an earth-like orbit around the sun [56]. The full
BBO configuration improves upon the star configuration by reducing the noise at the £ > 4
multipoles (compare to figure 5 of [44]). The noise curve for BBO is given in ref. [57] and
the total time of observation is taken to be Ty,s = 4 years.

LISA-Taiji

The total time of observation is taken to be Ty,s = 4 years and the noise curves for LISA
and Taiji are obtained from [58] and [59] respectively. Both LISA and Taiji will be in an
earth-like orbit around the sun with an angular separation of 40° [59].

ET-CE

The total time of observation is taken to be T,y = 4 years and the noise curves for ET!3
and CE!* are also available online. The locations for ET and CE are taken to be the same
as those assumed in [54].

2https://github.com/damonge/schNell.
Bhttp://www.et-gw.eu/index.php.
Y“https://dcc.ligo.org/LIGO-T1500293 /public.
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Figure 3. N plotted for BBO, LISA-Taiji, ET-CE and SKA at fBPC = 0.1 Hz, f-3*~™0" = .01

Hz, fEI~9F = 63 Hz and f35A = 1year—! Hz. The quantity NOW is defined as NEW = Neﬂ/ﬁéw.

PTAs

We consider a futuristic PTA experiment like SKA with a network of Ny identical pulsars
distributed isotropically across the sky whose timing noise is of the form [60],
N; =207AT. (3.25)
Here 1/AT is the cadence of the observations and o, is the rms error of the timing residuals.
For SKA we assume the following set of values Nps, = 50, AT = 2 weeks, 0y = 30 ns and a
total time of observation Ty, = 20 years. The choice of values is similar to that considered
in [61]. This estimate for the NV could be made more realistic by dropping the assumption
of identical pulsars and including additional sources of noise, e.g. a red timing noise as well as
correlated noise sources arising from clock or solar system ephemeris errors [62]. One could
also consider including more pulsars (Npsr ~ 100-1000), as expected for SKA2 [63]. We
leave this for future work.
In figure 4 we plot the relative error in the measurement of F{{ defined as
SFis =

AFE/ IR (3.26)

for different values of Qgw and taking a scale independent Nlﬁfﬁ = 10%. In calculating the

error we have also assumed for simplicity a spectrum for Qgw that is flat on small scales,
in the frequency range relevant to the particular GW detector. For reference, note that we
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Figure 4. The relative error in the measurement of ﬁ‘&tﬁ as a function of £y, for BBO, SKA,
LISA-Taiji and ET-CE. The dashed curves show the errors for an idealised, cosmic variance lim-
ited measurement.

previously defined

ik, q) = B Po(d - k) (3.27)

in terms of the Legendre polynomials with £ = 0,2 for the monopolar and quadrupolar cases
respectively. We see that for a large value of the CGWB monopole Qqw = 1070 we can
achieve a relative error  F{ ~ 1072 with BBO for both the monopolar and the quadrupolar
F and a slightly larger error with SKA. With the ET-CE and LISA-Taiji networks the
relative error in this case is of the order 10! and saturates quickly around fpax ~ 10 due
to their lower sensitivity compared to BBO. For a smaller value of Qgw = 10712 only BBO
and SKA are able to detect F{{, reaching a relative error of the order 10~!. For both values
of Qaw BBO is cosmic variance limited, especially for the monopolar TTS. We also see that
the error is smaller in the case of the monopolar T'TS as compared to the quadrupolar one,
which is to be expected from the discussion of the previous section.

Astrophysical foregrounds

The analysis carried out so far implicitly assumes that only the cosmological background
contributes to the SGWB. However, in addition to this background, one also expects a back-
ground of gravitational waves arising from unresolved astrophysical sources to contribute
to the SGWB and its anisotropies [64—76]. Detecting the cosmological background in the

~16 —



presence of this astrophysical foreground will be a major challenge and various methods to
separate the monopoles of these backgrounds have been proposed in [77-86]. Importantly,
these techniques exploit the fact that astrophysical and cosmological backgrounds have dif-
ferent properties w.r.t. their frequency range, spectral dependence, time dependence, and
can thus be distinguished from each other. AGWB and sub-threshold GW events can also
be detected using the time domain correlation with EM counterparts across multiple fre-
quency bands [87]. In particular for the inflationary background, there is the possibility of
detection on vastly different scales ranging from the CMB up to interferometers whereas the
various different astrophysical backgrounds are each expected to be limited to a much smaller
frequency window.

Moving beyond the monopole, one can also study the prospects of detecting the
anisotropies of such backgrounds, both cosmological and astrophysical. Since the proper-
ties of the astrophysical background depend strongly on the distribution of the large scale
structure, it will have cross-correlations with probes like galaxy clustering and weak lens-
ing [65, 67, 88-92]. As for cross-correlation of the AGWB anisotropies with the CMB, this is
a direction which is being actively investigated [51]. Interestingly, the findings of [51] suggest
that cross-correlating the CMB with the cosmological SGWB provides a stronger signal.'®
One may then exploit these cross-correlations to help distinguish between astrophysical and
primordial anisotropies.

To highlight the effectiveness of this approach, we compute here the signal to noise ratio
of the cross-correlation of the primordial GW anisotropies with the CMB in the presence of
an astrophysical background which acts as a foreground to the primordial signal. The signal
to noise ratio (SNR) of this cross-correlation is defined as

. 1/2
Zmax (C?W—T,mgnal) 2 /
SNR* = | > (20+1) 2 , (3.28)
o (C?WfT,total) + C?W,totalC}‘T
where
CeGWfT,signal _ CZG\)VfT’ttS
CéGW—T,total _ CgGW—T,signal + C,(S}W—T,induced7 (3.29)

CéGW,total _ CZGW,tts + CZGW,induced + CZGW,astro + NZGW )
We assume an astrophysical background of the form (¢ + 1/ 2)C'£G Wastro  Agws, which
is based on the astrophysical models of [67-69]. The upper limit Agws = 1072° roughly
corresponds to the expected magnitude of the background around f = 63 Hz, while the lower
limit Agws = 1073% corresponds to the magnitude around f = 0.01 Hz [68, 69]. Since our
aim here is to estimate the SNR for the cross-correlation at the frequency range relevant to
BBO, we assume for simplicity that the quantity Aqwp takes on values between these two
limits. The resulting SNR is plotted in figure 6. As discussed earlier in this section, the
SNR for the monopolar TTS cross-correlation is much larger than that of the quadrupolar
TTS. The primordial signal can be detected at a statistically significant level even for the
upper limit of the astrophysical background, Agws = 1072°, despite the fact this upper
limit is larger than the primordial C$W whenever Qgw < 10712 and |Ff| < 5 x 103 (see
figure 5). Thus, even if a direct observation of the primordial anisotropies is made difficult

'5A GW signal of cosmological origin that is detectable at e.g. BBO frequencies is assumed here.

17 -



Qaw = 1072, |Exp| = 5 x 10°, ket = kppo

10722 — ‘ —
i — Agw =107% — Monopolar TTS

10_24% — Agw =107  — Quadrupolar TTS

PO ST ST —« |

10—26 %

GW

~ 10—28 ; é

1090,

Figure 5. The C’ZGWfor the astrophysical background (yellow shaded region) and for the CGWB
with Qaw = 10712 |F%¥] = 5 x 103. We have assumed an astrophysical background of the form
(¢ +1/2)C, = Agws. For comparison the CFW of the CGWB have been rescaled as CSoW —
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Figure 6. Left: SNR for the GW-CMB cross-correlation arising from the monopolar TTS bispectrum
plotted as a function of Qgw and |F|, taking ((+1/2)Cy = Agws for the astrophysical background.
Right: SNR for the same cross-correlation but for the quadrupolar TTS bispectrum.

by the presence of the astrophysical foreground, cross-correlations with the CMB can still
prove to be useful. We also see that for the quadrupolar TTS, a similar SNR is possible for
a much weaker astrophysical signal, with Agwg = 10727 or lower.

3.3 Cross-correlations with anisotropies from (y~7) bispectrum

We now calculate the cross-correlation of the intrinsic GW anisotropies from the TTT bispec-
trum, eq. (2.13), with the CMB temperature anisotropies sourced by the large scale tensor
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modes. This contribution to the CMB temperature anisotropies can be written as [48],

. q Mg s A -
0= 3 [ dn o gaa a0, (330
s==£2

where x(1) = 1o —n and the integral over the conformal time spans from 7; = nrec to 75 = 10.
The spherical harmonic coefficients can be obtained using eq. (2.31),

T _ e [(E£2)! Bq g jelaxm) v -
= 0\ oy 2] i e (g v @- 63D

The resulting cross-correlation is

. (- D)0+ 1)(0+2) i
COW-Tyttt _ ( / ¢2dg Fi¥ (k, q) P?
¢ i Z T da PRk )Py (g)

/d 87 k,n) je(gx(n))
(gx(m)?

(3.32)

For modes that re-enter the horizon after the universe becomes matter dominated (k < keq)
we have [93],

3j1(ka 77)

Ty (k,n) = i

(3.33)

Limiting ourselves to these modes with k < k.q, we can approximate the cross-correlation as

GW Tttt (5—1)5(54'1 )(£+2) Fli( s/ \Je
mo 9T (k,n) je(gx(n))
x/md” o ()2

The magnitudes of the different contributions to the cross-correlation are plotted in figure 7.
In the next section, we will consider the signatures studied in this section for a specific
realisation of inflation. The analysis of the projected constraints on F is presented in
section 4.6.

(3.34)

4 Constraints on the extra spin-2 setup

4.1 Description of the model

In this section, we consider an effective field theory approach to inflation comprising an extra
spin-2 field o;; non-minimally coupled to the inflaton [31]. This direct coupling allows o;; to
be effectively light compared to the Hubble scale (avoiding the so-called Higuchi bound [33])
and, in turn, the bispectrum to have a significant squeezed component (as already mentioned
e.g. in [31, 94]). The action describing this model is given by

S =5+ S5+ Sint, (4.1)
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Figure 7. The cross-correlation of the SGWB anisotropies as a function of ¢ plotted for |ﬁ'§fﬁ| =
|FE| = 103 and a tensor-to-scalar ratio r = 0.05.

where S; denotes the standard generalised slow-roll dynamics captured by the single-field
EFT approach to inflation [95], S, is the free action for the spin-2 field o;; and Siy contains
the quadratic and cubic mixing interactions,'®

1
Sint:/de?’xa‘l[ \/>Ha 88]7rca +2a gvczja }
3 -2/ —1 rij
1 lcUjilc 4.2
/de ral 2€H2Mp1a (a™ Oym0jme0 (4.2)
+ 2H8i7rc(9j7rcaij) — M(Jij)g + .. } .

Canonically normalising the fields, we have . = vMp), where 7;; describes the standard trace-
less and transverse tensor fluctuations and . = /2eH Mp 7. The field 7 is the canonically
normalised Goldstone boson, linearly related to the curvature fluctuation via ¢ ~ —Hm [95].
The quantities g, u are coupling constants. The dots in eq. (4.2) stand for higher-order
mixing interactions.

We can decompose the spin-2 field ¢/ into the helicity states as

oij = O'( )+ a( ) + 0(2) . (4.3)

As usual, we may neglect helicity-1 modes as they end up being diluted by the inflationary
expansion (see e.g. [96]). The (traceless and transverse) tensor degrees of freedom in the

theory, v;; and o can be expanded in the R/L-handed basis

1]

e®* N (k) (T (4.4)

A=R/L

Yij =

1From here onwards 7 denotes conformal time and ’ stands for differentiation with respect to confor-
mal time.
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and

@ d k pikex
A= R/L
where we have introduced the basis
R/L 1 .
eij/ =3 (e:; + zeé) , (4.6)

see appendix A for more details. The polarisation tensors obey the following normalisation
conventions

e/ E(ky - e k) =1, (4.7)
e “ (k) - e (k) =0, (48
e/ (k) = e/ (k) = e[/ (k) (4.9)
We may also write ¢ and JZ(J), as
Bk gy
C:/(2ﬂ_)3elk Ck(T)’ (410)
Bk w00
o0 = / (%)Sek &, (k)ol(r), (4.11)
where
. 3/ b
(k) =4[5 (kz‘kj - ;) , (4.12)

with e?j conforming to the following normalisation rule
Q(l%) . Q(l%) =1 (4.13)
€;j € . .

One may proceed to quantise fields Xy (7) by expanding in terms of annihilation and creation
operators,

Xie(r) = areuil (1) + ol (7). (4.14)
We report below the mode functions of ¢ and -,

1H

¢ . —ikT
= ——(1+ik , 4.15
uk(T) 2MP[\/$( ? T)e ( )
2% H e
ul () = 7Mpl Tkg(l + ikT)e kT (4.16)
and those for the o;; field,
0'(2) 3/2 (1) 12 (1)
H - H, (—ca(T)kT), (4.17)
21
a<0) 3/2 ) 12 (1)
H - Hy (—co(T)kT) . (4.18)
07
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Here v = /9/4 — (m2/H?), m, being the mass of the “extra” spin-2 field, HY is the Hankel
function of the first kind, and cy/ denote the sound speeds of the helicity-0/2 components,
with co; and cg; the initial sound speeds. We verified!” that the solutions (4.17) and (4.18)
reproduce the Bunch-Davies vacuum at early times, and that they reduce to those obtained
in the ¢ 2 = constant case when the sound speeds are time-independent [31]. By combining
together the expressions for the different sound speeds, the following independent relation
follows [31] .

= icg + zcﬁ, (4.19)
which connects the sound speeds of the different helicity modes. We shall require that the
expressions above are valid under the assumption of slowly varying sound speeds. When-
ever the time dependence of the sound speeds is more sharp one ought to employ different
approaches to the solutions (see e.g. [98]).

4.2 Sound speed(s) scaling

In this work we will adopt scale dependent sound speeds. This can be taken simply as an
ansatz but one may show that in terms of cosmological correlators this choice corresponds,
to a good approximation, to employing weakly time-dependent sound speeds. Let us start
by considering the following parametrisation for the helicity-j sound speed

cj(t) = 02 e SN 4 c?, (4.20)

where N = fttz H(t")dt' is the number of e-folds between a given reference time t; and ¢,

with cé- = ¢;(t;). Our choice to add an asymptotic value cf is slightly different from the one

adopted in [99]: it ensures that, regardless of the duration of inflation, there is a lower limit
c;-v < cé- in place for the sound speeds. This is very convenient in view of perturbativity
bounds on ¢; as the latter impose a lower limit on ¢; of the order of 1073, Each s; is taken to
be a constant positive parameter. Their meaning is most clear in the c;-c < c§~ e %N regime,
where they approach the slow-roll parameter § usually defined [100] as 5; = ¢;/c;H. A weak
time dependence for the sound-speeds is then tantamount to requiring s; < 1. In conformal
time eq. (4.20) reads
i [T\ f

cj(T) = cj (Tz) + ¢ (4.21)
where for reference we take 7; = 1/ko with kg = agHp. It is well known that, when employing
the in-in formalism for cosmological correlators, the main contribution comes from the time
when mode-functions are at horizon crossing. This is because mode functions exhibit highly
oscillating behaviour deep inside the(ir) horizon.

As explicit in our calculations, each ¢ mode function is proportional to functions of
the 7—[1(,1’2)[—cj(7') kT] type, so the horizon is at —c;(7) kT ~ 1. Given that ¢; values have
a rather narrow range between cb and cg , one may solve for 7 and verify that (i) at CMB
scales (i.e. kK = kcup) one finds ¢;(7MB) ~ ¢} and (ii) at e.g. BBO scales (i.e. k = kppo)
one finds c]-(TBBO) ~ cg to a very good approximation. This is precisely what one finds also
in employing scale-dependent sound speeds:

kTS
cj(k) = cj <ko> +ef (4.22)

17See e.g. [97] for the full derivation of the mode functions in the case of a time-varying sound speed. Our
solutions for the wave-functions coincide with those obtained in [97] in terms of canonically normalised fields.
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which we shall adopt henceforth. The above line of reasoning is based on the notion that the
key contributions to correlators come from the horizon of the mode functions at hand. This is
easily verified to be the case when all wavefunctions in the integral corresponding to a given
vertex share the same horizon. Whenever there are instead mode functions with different
arguments (and therefore different horizons) in the same integral, the horizon of choice is
clear: that corresponding to the mode that exits the horizon last (see e.g. [101, 102]). The
reasoning is always the same: the integrand at any earlier time would display a highly
oscillating behaviour due to at least one mode function. We will implement this criterion in
all our in-in calculations.

4.3 The (yyv) and (yy¢) bispectra

The mixing action in eq. (4.2) can be made more explicit by writing it in terms of helicity-
fields

| g
Sint = /dT 3z a* [—\/2%[{@_28@@%0(0)’” + ia_lg oA ija(z)’”}
+ / dr &3z a* {—MaQ(alaiﬂcajﬂca'(o)’ij + ailamcajﬂca’@)’ij (4.23)
Pl
+ 2H6¢7rc(9j7rca(0)’ij + 2H8¢7708j7rca(2)’ij)

The interaction vertices of interest for our analysis are the following

H —— | &8 gM 30 S(2)si5 — ddq g a3 IA (2 4.95
0'(2>’Y - € Pl a 72‘]0- - Pl Z ’7 ) ( : )
2 (27r NeRIL

H(U(z) 3 :/dgm,ua4 afj) g(k) a,(j)

NENENE o

o~ N A ", A (2N _(2),\
xpat Y (@) (@) @) o oY oG (4.26)
MM N'=R/L

H(O.(Q))2o.(0) = /dgx 3pat 02(]2) -U](-i) ’UIE:(i))

d3 / d3 " 33 , "
—/ / /(%) (25 (a+d'+q") (4.27)
3 . NS PN 55 WISV ’
><3\f2ua4 S (@) - 5 @) @) ol o o,

MN=R/L

_ 3.9 2 i [ a2 g 22, (0)
HU(O)C_—/d v Mpia 8;0;¢C o7 _/ ) \/;HMPM 7’ Cqo g (4.28)

These lead to o-mediated contributions to primordial correlators (figure 8), which can be
evaluated with in-in techniques. In this work we are interested in the effects of such contri-
butions to the three point functions (yy¢) and (7). In particular, we are interested in those
diagrams that end up giving the leading contributions to the three-point correlators above in
view of our sampling the ¢y < 1 region of parameter space. As we show in sections 2 and 3,
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Figure 8. Leading o-mediated contributions to (yy() and (yy7). Straight lines correspond to (,
wiggly lines correspond to 7, red (black) dashed lines correspond to ¢(® (5(?)) fields.

this regime is the one for which the effect of primordial correlators on GW anisotropies is
the strongest.

It is worth at this stage to comment on the squeezed limit of the STT and TTT correla-
tors and consistency relations. For single-field slow-roll models inflation it is known [101, 103]
that the leading contribution of these bispectra in the squeezed limit is in fact a gauge artifact.
The physical contribution is instead to be found at sub-leading order (i.e. one typically pays
the price of a k‘% / k?q suppression). Consistency relations may instead be broken'® in multi-
field scenarios, for non-Bunch-Davies initial conditions, in the case of non-attractor (followed
by an attractor phase) solutions and for models with non-standard symmetry breaking pat-
terns (e.g. (super)solid inflation, see for example [42, 105, 106]), to name a few. For the model
at hand, it is straightforward to show the breaking of consistency conditions parametrically,
in that certain coefficients appear only at cubic order and are not present in the (tree-level)
power spectra [31, 94]. The diagrams under study then give a contribution that is both the
leading one and physical. The main o-mediated diagram in the (yyv) bispectrum is given by

<721172227233> = (27T)35(3)(E1 + EQ + E3) «4/\1/\2/\3Bttt(k‘1, ko, k’3) ) (4~29)

where the function By (k1, k2, k3) in the squeezed limit k;, = ks < kj ~ ko = kg reads

24 x 2 M q 3 CQ(kS) 5/2 CQ(kL) 1/2
Bl ks, k) = K2 H (Mm) ( C2i ) < Cai ) Hezyv), (4:30)
g T i i

and

A~

AN — M (Fy) 22 (R )yt (ka) (4.31)
In the same limit the quantity A reads

1 Y ~ 1 if Al = A9
AN = — Rk e (kr) % {0 £ adry (4.32)

18We write “broken” to conform to standard terminology here. For our purposes it is enough for consistency
relation to be modified, they can still be in place. In single field slow-roll the leading contribution to the three-
point function has the same effect as a gauge transformation. In multi-field models it is often the case that a
specific linear combination of different contributions to a diagram may be described as a gauge transformation,
but, crucially, not each contribution taken on its own. There may be, in the multi-field case, more than one
field that non-linearly transforms under the diffeomorphism behind the consistency relation and that is why it
is a linear combination of contributions to correspond to the gauge transformation. See e.g. [104] for interesting
examples along these lines.
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The function Z(cg,v) is given by eq. (B.35) upon replacing ¢y with ¢z, obtaining

T 0 1 T2
I(co,v) = Cg((;/;) L d$1[ deL dzg (—z1)" '/

x { (=22) /27 (—ag) T2 x sin[—an]Im [ HD (—e5 (k)22 HP (s (ks)ws) |
x Tm [HD (= (k) w1 )HE (—ea(ks)as)|

 (—2) M2 (—ag) /2 sin[—a1] sin[—wo] T [H{) (—eo (ks )5 HI (—a(ks)s)
x HP) (—ea(ks)z1)HP) (—ea(ks)s)] |

0 .
X (/ dy (—y)"'/?Re [elyH,gl)(—cQ(kL)y)D , (4.33)
and is well-fit by the following power law in co

N a(v)
Z(co,v) ~ i) s (k)™ (4.34)

where a is a parameter dependent on v (see table 2 for a sample set of possible values). By
proceeding in a similar fashion (see appendix B for technical details), we obtain the following
o-mediated contribution to (yv()

(A2 Crg) = (2)203) (kg + ko + ki3) AN By (e, ko, ks) (4.35)

where the function Bys(k1, k2, k3) in the squeezed limit kp = ks < k1 ~ ko = kg is given by

Bugs(kr, k k)——ﬁﬂ g9\’ 2" caks)\* (colks)\"? [ colke) "/
tts\VL, Sy kS ) = e H \ Mp kg/Z—Vki/Z-H/ 9 Coi Cos

x Z(cg,co,v), (4.36)

and
AN = (8 (k) - @ (ko) — BEYRY - € (h) - €7 (R) ) - (4.37)
In the squeezed limit A simplifies to

. {1 it A\ =\ (4.38)

4 -
A = — " You (k) Yo (ks) x
sq. 5 %{: 2M( L) 2M( S) 0 if A # Ao
The function Z(co, c2,v) is given by eq. (B.35), which reads
') [° o . ~1/2
Bt ot [ [ s
X {(—1’2)1/2*”(—333)*1/2 x sin[—z1]Im [ei“?-l,(})(—CQ(kS)xQ)H,(?)(—cz(k:g)xg)}
x Im [H,(jl)(—CQ(kS)xl)HZ(,Q)(—Cg(ks)l’g)]

Z(co,co,v) =

+(—a9) V2 (—a3) Y27V sin[— 1] sin[— 5] Im |:H1(jl)(—CQ(kS)$3)Hl(,1)(—CQ(kS)Q,'g)
xHP (e (ks )z ) HEP (—ea(ks)s)] |

X (/_OOO dy(—y)"/*Re {6"‘1’7{9)(_00(@)”}) , (4.39)
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and is well fit by the following power law in ¢y and ¢z, eq. (B.37),

N a(v)
Z(co, c2,v) =~ etk colks) a(hg)? (4.40)

The key quantities that provide a handle on non-Gaussianities via GW anisotropies are
Fi(ks, k) and F{§ (ks, k1), defined respectively in eq. (2.11) and eq. (2.5). The full scalar
and tensor power spectra of the model under scrutiny are given by (see also [31, 32])

_ Ccw) (ak) (9
Felb) = AMpek? [1 " ecy” (k) ( OCOi ) <H> ] ’ (441)
412 C,(v) [ca(k 2
PO =1 ll ram (5 (7) ] ’ (442)

where the analytical form of the v-dependent functions C¢(v) and C(v) can be found in
ref. [31] in some specific configurations. Our interest lies in GW anisotropies at intermediate
and small scales. The EFT at hand can deliver sufficiently large GW spectrum and anisotropic
component at the appropriate frequencies provided we work in the co < 1 regime. A small
helicity-2 sound speed at all scales may run afoul of non-Gaussianity bounds from CMB
measurements. It is therefore convenient to consider a scale dependent ¢y, and a blue GW
spectrum in particular.

As we shall see, choosing a ¢y that decreases towards smaller scales and a ¢y ~ O(1)
that exhibits a very limited variation across the frequency range, makes for a very interesting
phenomenology. At CMB scales scalar and tensor spectra are close to those of single-field
slow-roll inflation, i.e. the sourced contribution is sub-leading. Going towards smaller scales,
the scalar spectrum remains largely dominated by vacuum fluctuations whilst the GW signal
is due to the sourced contribution

H2
Prkp) 2 ———+ 4.4
4H?
Py(kr) =~ ma (4.44)

N 4H? Cy(v) [ca(ks) g\2
P’Y(kS) — Mj%lkg C%Z(kg) ( 202i > (H) ’ (4-45)

where one should picture k7, at CMB scales and kg corresponding to e.g. PTA or interferom-
eter frequencies. Given such behaviour for the power spectra, we may proceed to evaluate
the non-linear parameters as defined in egs. (2.11) and (2.24), to obtain

Fit (ks kr,v) =372 2”062((””)) (*]\i—g’l) (CQC(ZIS;)_S;Z%Z) (é) (Z) (ZZ>3/2—V’ (4.46)
Attt =2 50 () o Tom) () () ).
(4.47)

As clear from the common (kz,/kg)®/?>~" scaling, a small exponent (i.e. a light field) will
provide the most striking signatures for both the auto- and cross-correlations we are after.
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Combining eq. (4.46) with eq. (4.47) to obtain

1
3 Co; Co(kS)CO(kL) VT3 o
Fi (ks ky,v) = — () () FUl8 (ks & 448
NL( S L’V) 4 \ 9 CQ(kS)CQ(k'L) NL( S5 Lvy)’ ( )
shows that whenever ¢y < ¢y, for a sufficiently light field the TTT non-linear parameter will
be enhanced with respect to the T'TS one.

4.4 Parameter space

Let us now discuss the parameter space of the theory. First of all, following the previous
subsection, we fix the following parametrisation for the helicity-2 sound speed co,

ko)
Cg(k') = C9; (]f) + cay . (4.49)

For the helicity-0 component we take the following parametrisation

co(k) = co; (;;;0>80 ) (4.50)

Note that here we are neglecting cyr. The reason is that we are interested in scenarios where
the running with scale of the helicity-0 sound speed is almost absent, with cy(k) ~ 1.

A number of constraints on the parameter space of our model are already in place.
These come from: (i) consistency of the theory (i.e. gradient instabilities, perturbativity); (ii)
constraints on the scalar power spectrum amplitude and spectral index (e.g. it is important to
keep cq fairly close to 1 at CMB scales so that the scalar power spectrum is dominated by the
vacuum and there is no issue with the spectral index being in agreement with observations);
(iii) constraints on the tensor power spectrum [6, 107]; (iv) constraints on scalar and tensor
non-Gaussianities. Points (i)-(iii) are discussed and summarised in sections 3.1, 3.2 and 3.3
of [32]. Point (iv) is discussed e.g. in [99].

The existing constraints on primordial non-Gaussianity at CMB scales require co 2
1072, while one must impose ¢y 2 1072 throughout due to the perturbativity bound. More-
over, taking co; close to 1 with sg < so implies the following relation for the sound speeds,
co ~ ¢1 > 2.1 The momentum dependence of the sound speeds is plotted in figure 9 for a
set of parameters that maximises the GW amplitudes at direct detection scales. Note that ¢g
has been chosen as large as possible (close to 1) throughout its scale dependence due to the

constraint g/H < \/% imposed to avoid gradient instabilities [32]. This allows us to take
larger values of g/H, leading to an observable GW spectrum on small scales (the sourced
contribution to the tensor power spectrum scales as (g/H)?, eq. (4.45)).

The same constraint also ensures that the sourced contribution to the scalar power
spectrum is subdominant compared to the vacuum one whose amplitude and spectral in-
dex are taken to be Ag = 2.09 x 1072 and ng = 0.9649 in accordance with the Planck
values [6]. A detailed analysis of the constraints on the parameter space of this model has
previously been carried out in [32, 99] and we have ensured that our choices for the parameters
{¢s;is s p,5, u/H, p/H, v} lie within the allowed region.

The scalar and tensor power spectra for this model are plotted in figure 10 with the
parameter choice cy; = 2.5 x 1071, Cof = 1073, 59 = 1.8 x 1071, ¢py = 1,80 =0,9/H =

We are assuming conservatively that the relation in eq. (4.19) holds for scale-dependent sound speeds
as well.

_97 —



100§

1073 === -
|— cok) — ci(k) — calk)

() T T T T T T R T A ki 1 s
1074 10° 10* 108 1012 1016

k [Mpc] ™!

Figure 9. The scale-dependence of the sound speeds c, (k) taking cg; = 2.5 x 1071, Caf = 1073, s =
1.8 x 107!, co; = 1, s9p = 0. The black and grey dashed lines show the bounds from perturbativity
and CMB non-Gaussianity respectively.
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Figure 10. Left: the scalar power spectrum for the spin-2 model along with the measured power
spectrum from CMB observations [6] and the constraints from various experiments (see [108-112] for
the exact constraints). Right: the different contributions to the tensor power spectrum for the spin-2
model. The choice of parameters for both panels is co; = 2.5 %1071, Caf = 1073, s = 1.8x 107, ¢g; =
1,s0=0,9/H=4x10"3v=1.45.

4 x 1073, v = 1.45, H/Mp = 107 and the GW spectrum is plotted in figure 11 for different
values of cor. We see that for cop = 1073, the GW spectrum falls within the sensitivity range
of SKA, Taiji and BBO as well as next generation CMB experiments like CMB-S4. For the
same choice of parameters, in figure 12 we plot the TTS and TTT non-linearity parameters
taking Fy, with the expressions given in eq. (4.46) and eq. (4.47). The expression for F&tﬁ is
exact since the scalar power spectrum is dominated by the vacuum contribution throughout.
For I}, note that since the tensor power spectrum is dominated by the sourced contribution
on smaller scales eq. (4.47) is an approximation that works well only on the largest scales
(kr < 1072). While this approximation reproduces the correct scaling as well as the order
of magnitude in this range, the exact results are used for all the plots and in calculating the
correlations in section 4.5. The behaviour of both F{ and F&tﬁ as a function of momentum
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Figure 11. Qgw(k) for different values of cay plotted alongside the power law sensitivity curves

for SKA, LISA, Taiji, BBO and ET. We also plot the current bound from the CMB as well as the
expected sensitivity of CMB-S4 [113].
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Figure 12. The non-linearity parameters FNL(kJS, kr) for the TTS and TTT bispectra plotted as a
function of kg and ky, for u/H = 1071.

can be understood as a result of the scale dependence arising from the factor (kr,/kg)%/?".
There is also a moderate scale dependence due to the running sound speed cy whereas cg
remains constant throughout.

4.5 Angular power spectra of GW anisotropies

With the above choice of parameters and armed with the results of section 2.3 and 3, we
are now able to calculate the angular power spectra of the GW anisotropies for the spin-2
model. We plot these in figure 13 at the frequency scales associated to BBO. We see that

~ 99 —



,U,/H = 1071> vt = kppo /I,/H = 107], kot = kppo

10°F ‘
3 — TTT — TTS --- induced § g — T T T e
1073 | "
| T
10797 ....................... ]
_____________________________________ 10712 :
. - - 0 50 10 20 30 40 50
[ 14

Figure 13. The different contributions to the auto-correlation CZGW and cross-correlation C’E’W_T

plotted for the spin-2 model. For comparison we also plot the induced anisotropies from propagation.
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Figure 14. The cross-correlation CszfT for the spin-2 model. For comparison we also plot the
anisotropies induced by propagation.

both the auto-correlation and the cross-correlation are dominated by the TT'T contribution
as a result of the small sound speed of the helicity-2 component of the spin-2 field.

Interestingly, as a result of the (kr/ks)?/?>~" scale dependence, the CMB-GW cross-
correlation from the TTS bispectrum is suppressed at the largest angular scales, in particular
at ¢ = 2 (figure 14), in contrast to the case where i is scale independent (figure 7). While
this suppression can be a potential signature of the mass of the spin-2 field (recall that
v =14/9/4 —m2/H?), the TTS cross-correlation is always smaller than the cross-correlation
from the TTT bispectrum and thus this effect is unlikely to be observable. We also see that
CZG W= (figure 14) which can be physically understood from the fact that the CMB
temperature anisotropies from tensor perturbations arise from the subhorizon decay of the
tensor modes. Thus, in eq. (3.34) we have dvy/dn < 0 and so when F{ > 0 we will have
Cg} W= . Additionally, the TTT and T'TS cross-correlations have opposite signs which
reduces the cross-correlation signal.
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Figure 15. The relative error in the measurement of F{{f as a function of £,,x with BBO for different
values of 11, cof. The dashed curves show the errors for an idealised, cosmic variance limited measure-
ment.

For reference note that the GW energy density and Fi, Ftf at BBO scales can be

approximated as a function of the model parameters p1/H, cof as
—-1.7
Qaw (ksBo) ~ 1.3 x 10712 sz)
aw(kBBO) X (10_3 ,
Fii (kpBo, kp) =~ 1.2 x 10° (Z) : (4.51)

Fi(kppo, kp) =~ —3.5 x 107 (Z) :

Note that we have fixed all the other parameters to the values considered in section 4.4.

As a consequence of the scale dependence of F&tﬁ, FY the resulting C’?W, C’ZGWJF will

also be scale dependent,?’ i.e.,

k‘ 3—2v
CW (rer) = CEW (o) x ( ;”Bfo) ,

_ B k 3/2—v
CEWT (ko) = CEW =T (kppo) x < I]:Bfo> : (4.52)
re

for the anisotropies arising from both the TTS and TTT non-Gaussianity.

4.6 Projected constraints on Fni,

We can now estimate the error in the measurement of Fyi,. For the spin-2 model we have
seen that the anisotropies from the TTT bispectrum are dominant compared to those from
the TTS bispectrum. Thus, we focus here on the error in the estimation of F&tﬁ using both
auto-correlation and cross-correlation measurements (see section 3.2.1 for the details). In

figure 15 we plot the relative error in the measurement of F{ defined as

SFNE = AR/ (4.53)

20The additional scale dependence arising from the running of the sound speed ca(k) on small scales can be
safely neglected since this is nearly constant throughout (cz(ks) ~ 1073, see figure 9).
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Figure 16. Left: the CFW for the astrophysical background (yellow shaded region) and for the
CGWB anisotropies in the spin-2 model for different values of p/H taking coy = 1073, Right: signal
to noise of the total cross-correlation for the spin-2 model as a function of cof, p/H.

for different values of u, cor. For reference, note that at BBO scales, the GW amplitude and
FY can be approximated as a function of ¢y £,/ H as given in eq. (4.51). We see that in the
case of cay = 1073, u/H = 107! we can achieve a relative error F{l ~ 107%; a similar error
is achievable for the noiseless cosmic-variance limited case which is understandable from the
fact that for this choice of parameters we have C’EG Wit NZGW. For smaller values of y and
larger cof, i.e. smaller F Qaw, we see that the error saturates extremely quickly, around
lmax ~ 6—10, due to the fact that the detector noise increases rapidly after the first few
multipoles (see figure 3).

SNR of the CMB-GW cross-correlation

As in section 3, we also estimate the signal to noise ratio of the CMB-GW cross-correlation
for the spin-2 model in the presence of an astrophysical foreground. To arrive at a detectable
signal one needs to consider a relatively small Agwg. This can be understood from an
argument similar to the one made in section 3.2. In the expression for the SNR eq. (3.28)
one has the following term,

(CGW—T,signal)2 1/2

£

SNR™ ~ [y (20+1) COWotl T (4.54)
£ 4 L

For the spin-2 model we have seen that the CMB-GW cross-correlation as well as the auto-
correlation is dominated by the TTT contribution, however the variance of the CMB temper-
ature anisotropies is dominated by the scalar term rather than the tensor term. Thus, for the
spin-2 model anisotropies, we again have Cf W-Tsignal (C’ZG W’tOtalCET)l/ 2 unlike that of the

monopolar TTS considered in section 3.2 where we found Cy* "~ sl o (EWototal GTTy1/2.

Furthermore, we also see from figure 14 that C’f W= and CKG WIS for the spin-2 model

have opposite signs which reduces the total signal appearing in the SNR.
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5 Conclusions

During inflation, scalar and tensor quantum fluctuations are generated around the back-
ground solution. These modes eventually re-enter the horizon and “perturb” the path of any
field that propagates trough structure. One such field is the massless graviton. The effect
of GW propagation in a perturbed universe manifests itself in the intermediate/small scale
GW power spectrum in the form of an anisotropic component (see e.g. [27-29, 114]). It is
clear that such anisotropies are ultimately of inflationary origin and furthermore that they
are universal in the sense that they rely on there being an inflationary phase but require
no further model-dependent assumption. Naturally, detection requires the existence of an
observable SGWB at the scales relevant for each given probe. In our nomenclature, these
are induced anisotropies and their amplitude is typically 5SXV ~ VA~ C.

In this work we have studied another source of anisotropies, one that relies on the
existence of sufficiently large primordial mixed and/or tensor non-Gaussianities. We have
shown that, in order to be the leading source of anisotropies, this mechanism requires that the
non-linear parameters satisfy: F{{f > 1 and/or /r F{{ > 1. These requirements limit the
models that can be put to the test. On the other hand, by testing anisotropies of this nature
we are automatically probing not only inflation but in particular inflationary interactions,
which allows us to rule out significant regions of parameter space and possibly model space
as well. Furthermore, it is often the case that the same (rich) field content that produces a
GW signal within reach of e.g. PTAs or laser interferometers also has room in the parameter
space for those non-Gaussianities that give a leading contribution to GW anisotropies.

The first part of this paper took a phenomenological approach. Here we studied auto-
and cross-correlations of GW anisotropies and identified the parameter space (in terms of
Qaw, Fnr) that is within reach for upcoming GW probes. Our analysis revealed the impor-
tance of the angular dependence of the primordial bispectra especially in the case of cross-
correlations. For pre-determined angular behaviour in the case of temperature anisotropies,
having e.g. a monopolar or quadrupolar TTS signal can make the difference between having
an observable cross-correlation vs an undetectable one.

The focus on a stochastic gravitational wave background of cosmological origin should
not distract from the fact that there most certainly is a background of astrophysical origin.
This must be negotiated within our effort to test early universe physics. We have accounted
for the AGWB in our analysis, assuming its angular power spectrum amplitude varies between
1073 and 1072° (in the 1072 to ~ 100Hz range). We have seen that the use of cross-
correlations with the CMB is likely the most powerful tool at our disposal in this case.
Indeed, upon using cross-correlations, and depending on the parameter space, the primordial
signal can be detected even when the anisotropies angular power spectrum is dominated by
the AGWB component.

In the last part of this paper, we considered a concrete example of an inflationary model
equipped with (i) a blue GW spectrum and (ii) sufficiently large non-Gaussian amplitude to
grant a percent level relative error on Fit (for Fiit ~ 10%-10°) obtained via GW anisotropies
measurements. Our specific realisation underscores the fact that, despite the unavoidable
~ +/r suppression TTT-sourced anisotropies suffer w.r.t. to their TTS counterpart, it is still
possible for TTT to generate the leading anisotropic component of the GW spectrum. It will
be very interesting to consider other inflationary realisations for which this is not the case.
Another direction worth pursuing is the study of models with a monopolar TTS contribution.
We leaves these pursuits to future work.
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A Helicity-2 polarisation tensors

In this section we set our conventions for the definition of the helicity-2 polarisation tensors.
If the helicity-2 field wave-vector is written in polar coordinates as

k= (sin 6 cos ¢, sin O sin ¢, cos §) , (A.1)

we can define the linear polarisation tensors in terms of two unit vectors perpendicular to
k as

e = (u1)i(u1)j — (ug)i(uz); (A.2)
€5 = (w)i(uz); + (u2)i(w1); (A.3)

where

(A.4)

w1 = (sin ¢, — cos ¢, 0) _ {(cos@cosqﬁ, cos 0 sin ¢, — sin 0) if 0 < /2

— (cosfcos ¢, cosfsing, —sinf) if 6 > /2.
For a given bispectrum one can always exploit the momentum conservation, k; +kas+ks = 0,

and the invariance under rotations to make the three wave vectors lie on the same plane. If
that is chosen to be (x,y) plane, one can parametrise a generic wave-vector k; as

k; = k; (cos ¢,sin ¢,0), (A.5)

where ¢ is the angle of k; with respect to the chosen z-axis. Employing eq. (4.6), the
polarisation tensor in the helicity basis reads

sin? ¢ —sin¢cos¢p —idgsin @
) (k) = 5| sinpcosd  cos? ¢ iAscosp |, (A.6)
—iAgsing  iAgcos¢ -1

where Ay = +1 for s = R and s = L, respectively.

B Computation of o-mediated (y~¢)

In this section we give the detailed computation of the o-mediated contribution to (yy¢) in
the model described in section 4.

As we are interested in the co < 1 limit as a way to maximise our primordial bispectra,
the dominant in-in contribution being represented in (left panel of) figure 8. This turns out to
be the tree-level diagram with the highest negative powers of cs. Using the in-in formalism,
one can express this diagram in terms of nested commutators (see e.g. [102])

ey (T)Vies (7)€ (7)) = dry dry drs dry

x ([H(ra), [Hr(r3), [Hi(72), [H1(m1), 30 (D32 ()G (DI, (B.1)
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where all the integrands are written under a single time-ordered integral. We refer to this
form as the commutator form. The first step is to sum over all the possible terms one can
form by replacing one of the H; with H,2))2,0) ie. eq. (4.27), another with H (), i.e.
eq. (4.28), and the rest with H,@),, eq. (4.25). By using the mode-functions as specified in
eqs. (4.15), (4.16), (4.17) and (4.18), we get

01 011 00 O = ~(27)6 (1) o A+ B LA™ i ok,
(B.2)
where
AN = (e (k) - 2 (ko) — 3RS - € () - €} (ko) ) (B.3)
and

A= / dTl/ dTQ/ d’Tg/ dry | —— (CO 2 ) <C2(7-2)> {A1+A2+A3},
T17T3T4 Coq C24
/ dTl/ dTQ/ dTg/ dT4 ( ) ( > BI+BQ+B3}7
T1T2T4 Coi C2i
C= / dﬁ/ dTQ/ dfg/ dry | —2— (CO ™ ) <CQ(T4)> {Cr+Co+ s}
T17T273 Coq C24

(B.4)

Here

co(r)\ 72 [ ears) \ /2 [ ealra) \ M
Alz( o\T1 ( 2\73 > ( 2174 ) X(Sin[—kﬁgﬁ]—l—k?:sﬁ COS[_kBTlD

Coi C2; C2i

{ zk27’3’}-[ CQ(TQ)kZTQ)H(2)(_02(7-3)]{27_3)}
{7'[ —co(T1 k3T1)7-l(2)(—co(7'2)k37-2)]
e
/

2 1/2 1/2
(@51)) (CQC(:’)) xsin|[—Fki 1]

zkngrH CQ(TQ)ICQTQ)H(2)(—Cg(Tg)k‘QTg)}

x1 {
{7—[ —co(m1 k1T1)7'l(2)(—C2(T2)le2)}
|

x Im e_Zk3T4 (1+iksta)H, 1) 00(74)k374)7-l(2)(—60(7'2)14537'2)} ) (B.6)

1/2 1/2
Ag = (Coc(f)> (CQC ) (CQ T ) x sin[—k171]
(-

le[ 7’k?’TP’( Zk:ng)H (1) Co(TQ)kﬁng) (2)(—60(7'3)]{137'3)}

x Im {H(yl) (—C2(7‘1)/€1T1)7‘[(V2) (—62(7_2)]{17—2)}
xIm {e_ikm%l(})(—02(74)’{?274)7{1(,2)(-C2(Tz)k272)] : (B.7)
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(CO Tl) ( ) (CQ(T;))%X(Sin[—ksTlHksTlCOS[_kSTlD

C2
x Im {/H(y )( CO(TB)k?ng)H(l) (—CQ(Tg)kQTg)H(V2) (—60(7'1)]{237'1)%(”2) (—62(7—2)]{;27—2)}

x Im {eiklmHl(,l)(—CQ(T?,)]{Z173>HZ(/2)(—CQ(T4)]{717'4>} XSin[—kQTQ} y (B8)

1/2 1/2 1/2
By = (006(54)> (02(551)) (020(52)) xsin[—Fk1 7]

x Im {’H(Vl)(—62(73)k1T3)H(Vl)(—62(73)k2T3)H(VQ)(—CQ(Tl)lel)H(VQ)(—62(7'2)]{27'2)}

x Im {eik?ﬁ“ (1—ikgrg)HD (—co(73) ka3 ) HZ) (—60(7'4)]{337'4)} x sin[—kaTo] (B.9)

1/2 1/2 1/2
B3 = (00(552)) (02(:(;1)> (62(2(;4)) xsin[—k171]

x Im {7‘[1(,1) (—02(7'3)]617'3)7'[1(,1) (—00(7'3)]637'3)7'[1(,2)(—02(7'1)]617'1)7'[1(,2)(—00(7'2)]637'2)}

xIm {eik”‘?{(yl) (—CQ (’7’3)]4327‘3)7‘[(”2) (—02 (’7’4)]4327'4)}

XSin[—]{JQTQ] (Sin[—k‘ng] +k3To COS[—k‘gTQ]) R (B.lO)
1/2 1/2 1/2
Cl = (Coc(;l)> (CQC(;Q)> <C2C(2:3)) X (sin[—k371]+k37'1 COS[*]CngD Sin[*kQTQ} Sin[*k‘ng}

x Im {7‘[1(,1) (—C()(T4)k37'4)7'[l(,1) (—CQ (T4)k27'4)7‘[l(,1) (—CQ (T4)k17'4)

X H(Q) (—60(7’1)14337'1)7‘[(2) (—CQ (7’2)]4327’2)7‘[(”2) (—CQ (Tg)leg)} s (B.ll)

1/2
CQ = (CO s > (C2 Tl (62 ik ) X (sin[—k373]+/<:37'3 COS[—kgT?,])SiH[—kQTQ}Sin[—leﬂ

xIm [ H(D (o (ra) kg4 M (e (ra) hara HD (= (7a) b 7a)

XH(Q)(_CO(T3)I€3T3)H(2)(_CQ(TQ)kQTQ)HZ(,Q)(—CQ(Tl)lel)} s (B.12)
co (T2 1/2 ca2 (T3 1/2
C3= ( > ( ( ) X (sin[—ks 7o)+ k3o cos|—ksTa]) sin[—ka73] sin[—k171]

xIm{ ( C()(T4)k37’4) ( CQ(T4)]€2T4)7‘[1(,1)(—CQ(T4)]€1T4)
><'H,(?)(—60(7'2)]{}37‘2)7‘[,(/2)(—62(7'3)]{}27‘3)7‘[(”2)(—62(7'1)]{}17‘1)} . (B.l?))

One may want to rewrite the integrals by introducing the dimensionless time x; = k17,

finding
) ( 2(12)> {A+ 45445},

kf/ dxl/ dxg/ dxg/ dzy P (

- d d d d © ’73 V(@Y (B BB

= k_g 1 T2 T3 CERY — . { 1+D2+ 3}
1/2 2(14)

k3 dacl d.%'Q dl’g d$4 e . {01+CQ+03}

(B.14)
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where

st [ (e () ) 2 (o () )|
o 2) ) 2 (oo (2) 20
(

s (2) )12 (s (2) )] 1

1

x Im :le(/l) (—

M (e () ) 1 (o () 20

i 1) (<o (1) ) 1 (o2 (32) )
| (7)) 12 (oo (32) 22) | (B19
x Im :eizi’x?’ (1—%’%’:&,) 7‘[1(,1) (—CO % .

1) (~ea (32) an) 2 (-2 (2) )]

x Im :6—1‘:3:@%’(}) (—02 (k—l) :—?m) HP (—02 (%) Z?m)} , (B.17)

1 / @2 / x4 /
By = (coioil)> " (CQC(;)> " (02£;I)> v X (sm [—:—lxl} +—= xl Cos [ Z—lwl})

[\

x Tm _eﬂ%“ (1—1—1’—3964) HY (—co

M (e (32) o )}
cam 6 (e (32 ) (e (22 [ 13
)2

B2:<00§§)>1/2< 6(22 > ( C(;)>1/2><s1n[—xﬂ
I [H) (e (37) s) 3D (=2 (32) ns) M2 (=2 () ) 12 (e (32) o)
o () (o (2) B 9 (2 ) el

(B.19)
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33:<m§?>1/2<62£§)>1/2(”Sﬂ)uzxsin[_wﬂ
X [0 (—ea (52) ) 50 (—eo (32) s) M2 (—ca (52) 1) M2 (—eo (2) B20)
x| (< (32) ) U2 (<2 () )|

X sin :—:—?:@} (sin {—:—jxg} +:—j’:p2 cos [—%l‘g}) , (B.20)

2\ Y/ 22\ \ V/ zs\\ V/
(") ()7 () <bnlbmltnes ] -]
ol (e () )0 - (2) )0 () )

M (e () ) 12 (o (3) ) 2 (e () )]
(B.21)

xsin[—x1] xIm [’H(Vl) (—co (2—?) Z—sz;) ’H(Vl) (—62 (%) Z—ix;;) H(yl) (—02 (%) 1:4) X

xH?) (—Co (:{’) %’173) HP (—02 (%) %xz) ) (_C2 (%) xl)] ’
(B.22)

Cs= (COC(}Z)> 1/2 <02§1)> 1/2 (%?) 1/2 % (sin [—Z—sz} +Z—jx2 cos [—IZ—?@D sin {—%xg]
ctn o<t (e (5) o) 14? (-on () ) 0 (e (51 )

HP (e (12) L) WP (=2 (32) o) 12 (~ea(F)en) |
(B.23)

At this stage it is convenient to employ the approximations discussed in section 4.2 whereby
we use a scale-dependent sound speed in lieu of a time-dependent one. This leads to the next
step in our calculation, which is performed in the squeezed limit.?!

Squeezed limit. In this subsection we evaluate the squeezed limit of the previous result
when the scalar mode is much smaller than the tensor modes, ky, = k3 < k1 ~ ko = kg. By
using the same arguments of [99], we note that the terms Ay and Bj are of lowest order in
the ratio kr/ks — 0. Thus, they represent the dominant contribution in the squeezed limit.

2INote here that working in the squeezed configuration amounts to enforcing a hierarchy among the momenta
that is instrumental in determining the appropriate horizon discussed in section 4.2.
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In this limit one obtains

b () () ()" a0

(B.24)

2 1/2 1/2
. 1 Cz(ks) co(ks) 0 /
B= —E ( o ) ( cor ) ( ) / dl‘l/ d$2/ d.%'g/ d.ilf4 12974 2,

(B.25)

where
Ay =TIm {e””—l&” (—cz (ks) z2) HP (—¢y (ks) .%'3)}
x Im [’H,(}) (—c2 (ks) x1) 7-[5,2) (—c2 (ks) :L‘g)}

.k
x Im [ezkgme}) (—co (kL) IZ:LM) HP) (—co (ks) IZ:LLUQ)] X sin[—z1],  (B.26)
S S

and

By = Im [H{) (—ey (ks) as) D (—ez (ks) ws) HP (= (ks) o) K (—c2 (ks) 2)]

« Tm [ kg Ty (D ( o (ks) kag) (2 (—co (kr) l%m)} X sin [—xz1] sin[—z2] .
ks ks
(B.27)

By virtue of the change of variable kr,/ks x4 = y, these can be rewritten as

P (kL)-1/2<c2<ks>>2<cO<k ))1/2<o<lm)”2
- ks Coi Coi
kL/kSCUB T2
/ da:l/ d:ng/ dl‘g/ sin [—x1]
T123Y

x Im { ”337{ —cg (kg) z2) 7‘[(2) (—c2 (ks) 3”3)]
x Im {’H (1) (—¢y (ks)x1) 7-[(2) (—c2 (ks) 332)}

X Im{ “WHWD (—co (k1) y) HP) (—co(ks)zz:vg)] , (B.28)

and

HE <ks>>2 ( (ks>)”2 (2 <kL>>”2
o C24 Cos Coi
0 1 T2 kr/ksxs T3
></ dazl/ dxg/ d:L‘g/ dy sin [—z1] sin [—x2)
—00 —00 —00 —00 112y
x Tm [HD (=e (ks) 23) HY (—cz (k) w) HP) (—e5 (ks) 21) HP (— ez (ks) w2) |

x Im {eiy?l,(}) (—co (ks) ng) HP) (—co(kzL)y)} . (B.29)
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This last equation can be rewritten as

s (ealks)\? (colks)\ ' [ colkp)\ '
B=hg co(kr)
C2; Co; Cos
0 T x2 kr/ksxs z3
x/ dxl/ dxg/ dacg/ dy sin [—z1] sin [—x2]
—00 —00 —00 —00 T122Y

x Im [HD (—c (ks) 23) H (—ca (k) 23) HP (= (k) 21) HP (—ca (ks) 22))

i [e ) (o (hs) ) M (—eolbi)y)] (B.30)

The Hankel functions of the kind 7—[,(,2)(—02(k5)x3), oscillate and, as a result, suppress the
integral for —cz(kg)rs > 1.22 On small scales we want co(kg) small up to 1073, therefore
only values |x3| < 103 are relevant for the integral computation. As a consequence, the upper
limit of the integral in g4 is effectively zero provided that kr,/ks < 1073, Since we want to
consider the scenario where kg is a small scale (kg > 10° Mpc_l) and ky, is a CMB scale
(kr, < 1072 Mpc™1), this requirement is easily satisfied. This allows one to factorise the

~

y integration.

Looking at the Hankel functions H{? )( ca(ks)x;), one can further infer that only values
of x; for which —ea(ks)r; <1 (so |zj| < ¢y'(ks)) contribute to the integral. So, the argu-

ment of the Hankel functions HZSQ)(—co(kS)kL/k‘S x;) is smaller than 1077 x ¢o(kg)/c2(ks) <
1074, as we want co(ks) to be of order 1. This suggests that the Hankel function

1(,2)(—60(ks)kL/kS x;) can be approximated in the small argument limit as (see e.g. [116])

HED (ol s ) = 2Dt (R (B31)

As a result of these approximations, the previous integrals reduce into

A 2V T'(v) (cz(ks))2 (co(ks))m( O(kL)>1/2 e st

770(] kS ) C2; Coq Coq
/ dxl/ dl’g/ drz (—x1) V2 (—2) V2V (—23) 7V sin[—x4]
x m [ H (—ca (ks )22 HP (—ca(ks)zs) | T [HID (—calks)zn ) HP (—calks)s)]

([ dy e [ b)) (B.32)

22In this regards, a clarification should be made. In principle, in the in-in integrals we should introduce the
i€ prescription at the far past, which projects the interacting vacuum of the full theory into the vacuum of
the free theory (see e.g. [115]). Therefore, by giving an imaginary component to the integration contour in
the asymptotic past, the oscillatory behaviour at —oo of the Hankel functions, sines and cosines turn into an
exponential decay, suppressing the integration in the large argument limit.
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and

o 2T <02(ks)>2 (co(k‘s))l/2 (Co(kL)>l/2 e it

nch(ks) \ ez Coi Coi
/ dz / dzs / divs (—21) V2 (—9) V2 (—wg) />~ sin][—z1] sin[—s]
x Im {'H( )(—ca(ks)as)HID (— Cz(ks)f’«"s)?"f,(?)(—Cz(ks)xl)H£2)(—02(/’{5)%2)}
x ( / _dy ()" *Re [e%”(—co(my)]) . (B.33)

With this in mind, the bispectrum in eq. (B.2) to leading order in the squeezed limit becomes

Z 27T2 ° v, —3/2—Vv; — v
(2 (072 (0)Gey (0)) 37557 = — (2m)*3 ) (3 ky) =~ 27 kg

) (02(k5>>2 (co<ks>>1/2 <c0<kL>>”2 (B.34)

C24 Coq Coi

1 if A=A
0 if A #£ X

9

41 A x /7
X Z(cp, c2,v) X gZEM(kL)YgM(kS) X {
M

where

I(Co,CQ, = k?s / da:l/ dxg/ d:L’3 .CC1 —1/2
{( 29) /27 (—ag) T xsin[—an T [ HID (<o (ks )aa) HP) (— ca(ks)ws)]

x Im [7—[1(,1)(—CQ(kS)xl)H,(,2)(762(’9'5)362)}

- (=2) M2 (—ag) 2 sin [y sin[ -] T [HD (—e (ks )ws) HID (—ea(ks)s)

XM (—ea (ks )ur M) (—ea(ks)o) | }

([ Re [ e ) (B.35)

Notice that this is the same quantity as eq. (3.12) of [99] apart for the coefficient exchange
c5(kr) — cf(ks) outside the integrals, and the exchange ca(kr) — co(kz) in the y integration.
This suggests that it can be fit by the following power law

Z(co, c2,v) =

ch(kr)ch(ks)cs” (ks)

As in our case co(kr) =~ co(ks) = co, in table 1 we present the fit of eq. (B.35) with the
following power law

(B.36)

e
cgcs(ks)
The results of the fit suggest that the power law eq. (B.36) can be taken as a very good fit of
eq. (B.35) as well. In table 2 we present the fit of eq. (B.35) with the power law eq. (B.36).
We end this section by noting that the computation of the o-mediated contribution to

the TTT bispectrum resembles the one shown here for TTS, and we end up with eq. (4.30).
The main difference in the final result is the replacement cog — cs.

Z(cp, c2,v) = (B.37)
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L v [ o [ b ] c |
07 | 092 | 1392 1409
11| 201 | 2199 | 2.205
14 | 5033 | 2.80 | 2.801
1.45 | 7861.2 | 2.899 | 2.901
1.48 | 238569. | 2.960 | 2.960

Table 1. Results of the power law fit in eq. (B.37) obtained for different mass values, labeled by
v =(9/4— (m2/H?))"/2. The results agree with the fit in eq. (B.36).

v [ a |
0.7 0.96
1.1 2.99
1.4 506.2
1.45 | 7879.3
1.48 | 238800.

Table 2. Same as table 1 for the power law in eq. (B.36).
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