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The anisotropies of the stochastic gravitational wave background, as produced in the early phases of
cosmological evolution, can act as a key probe of the primordial universe particle content. We point out a
new universal property of gravitational wave anisotropies of cosmological origin: for adiabatic initial
conditions, their angular power spectrum is insensitive to the equation of state of the cosmic fluid driving
the expansion before big bang nucleosynthesis. Any deviation from this universal behavior points to the
presence of nonadiabatic sources of primordial fluctuations. Such scenarios can be tested by gravitational
wave detectors operating at a frequency range which is fully complementary to cosmic microwave
background (CMB) experiments. In this work, we prove this general result, and we illustrate its
consequences for a representative realization of initial conditions based on the curvaton scenario. In
the case of the simplest curvaton setup, we also find a significant cross-correlation between gravitational
wave anisotropies and the CMB temperature fluctuations. There is a fourfold enhancement vis-à-vis the
purely adiabatic scenario. We discuss the implications of our findings for identifying the origin of the
(cosmological) gravitational wave background when, as is often the case, this cannot be determined solely
on the basis of its spectral shape.

DOI: 10.1103/PhysRevD.107.103502

I. INTRODUCTION

A plethora of early universe processes are capable of
producing a sufficiently large stochastic gravitational wave
background (SGWB) to grant detection via gravitational
wave (GW) experiments (see [1,2] for reviews). The
improved sensitivity of the next-generation interferometers,
such as LISA [3] and ET [4], may well lead to the detection
of such a cosmological SGWB, thus providing us with a
new portal into the high-energy phenomena that took place
in the primordial universe.
Given the multitude of candidate SGWB sources, it is

essential to fully characterize the stochastic background.

The frequency profile is certainly a key observable in
identifying the precise the origin of the SGWB (see [5,6]
and references therein). However, different processes might
produce a SGWB with similar spectral shapes, thus
reducing one’s ability to discern among distinct sources.
Primordial gravitational wave non-Gaussianities do, in
principle, constitute an additional useful handle on the
nature of GW sources, but GW propagation effects tend to
suppress the size of non-Gaussianities to an unobservably
small level [7–9] (see [10–12] for exceptions). Crucially,
GW anisotropies induced by (ultra)squeezed primordial
non-Gaussianity do not suffer from such suppression, and
can therefore be of great use in characterizing the GW
signal [10].
The origin of GW anisotropies of cosmological nature

can be manifold. It may, for example, be inherent to the
SGWB production mechanism [13–21]. GW anisotropies
in the early universe have also been studied in the context of
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GWs from phase transitions [22–26] and cosmic strings
[13,14] as well as preheating [27,28] (see [29] for a recent
comprehensive review). Finally, anisotropies may also arise
due to GW propagation through an inhomogeneous uni-
verse [15,16,30,31], and it is in this context that we develop
the present work.
The recently developed line-of-sight formalism for GW

[15,16,31] allows one to treat the SGWB anisotropies in the
same vein as is done for the cosmic microwave background
(CMB) radiation. Much like the CMB, the SGWB anisot-
ropies can be decomposed into terms that represent, respec-
tively, the density perturbations at the time of emission, a
Sachs-Wolfe (SW), and an integrated Sachs-Wolfe (ISW)
effect.1 This formalism has been recently used to explore the
effects that additional relativistic particles and extensions of
the ΛCDM model have on SGWB anisotropies and their
cross-correlations with the CMB [32–34].
In this work, we point out a universal property of

cosmological SGWB anisotropies: their angular power
spectrum is nearly insensitive to the equation of state of
the cosmic fluid driving the universe expansion before big
bang nucleosynthesis (BBN). This result holds under two
assumptions. The first is that the GW initial conditions be
set by an adiabatic process. The second requirement is that
any transition from a nonstandard phase to the standard
radiation dominated (RD) era occurs sufficiently early.
With the second condition standing, any deviation from

the universal behavior would point to the presence of
nonadiabatic sources of primordial fluctuations. Such fluc-
tuations can therefore be tested by probing the SGWB at
scales much smaller that than those of the CMB. GW
anisotropies thus provide a compelling and complementary
handle on the particle content of the very early universe.
Our result on the universality of the GW anisotropies

spectrum is significant in that we are able to isolate the
mechanism underlying possible deviations: a departure from
adiabaticity in the very early universe. One interesting
example is found in the context of cosmic phase transitions,
which can engender a significantly anisotropic SGWB. It
was recently shown [26] that an early phase of nonstandard
matter domination supports sizeable SGWB anisotropies
with significant isocurvature components, compatible
with existing constraints from the CMB. The properties of
the anisotropy spectrum, as the one we discuss in this work,
lead to the identification of distinctive and unambiguous
signatures of nonadiabatic sources for cosmological
fluctuations.
The robustness to a nonstandard equation of state (when

not accompanied by isocurvature modes) that we find in the
GW anisotropies signal is quite interesting. Indeed, there
exist several cosmological scenarios,wellmotivated from the

top-down perspective, which are characterized by a different
evolution from the standard RD domination in the early
universe expansion (see Ref. [35] for a review). For example,
the coherent oscillations of a scalar field [36] or periods of
primordial black hole domination yield a phase of early
matter domination. Moreover, in quintessential inflation
scenarios [37–41], there is a period of kinetic energy
domination, dubbed “kination” after inflation. Note that
such a kination phase might also occur within the standard
radiation era [42]. Our results show that, in the absence of
isocurvature modes, the impact of such nonstandard phases
ought to be probed at the level of the SGWB frequency
spectrum [43–64]. This is because under such a condition
GWanisotropies are insensitive to a nonstandard evolution.
Given that such universal behavior is found under the

assumption of purely adiabatic sources, it is interesting to
consider cases where the adiabaticity condition does not
hold.2 We do so by focusing on the curvaton scenario
[65,66] and identifying the effect of isocurvature fluctua-
tions on GW anisotropies. We compute explicitly the
associated predictions for the angular power spectrum of
the anisotropies, highlighting the significant differences
with respect to the adiabatic case.
Our work is organized as follows: We begin with a brief

review of the SGWB line-of-sight formalism in Sec. II. In
Sec. III, we calculate the SGWB anisotropies while taking
into account the effects of a nonstandard pre-BBN equation
of state. Under the assumption of adiabatic initial con-
ditions, we show that the angular power spectrum of the
SGWB anisotropies is independent of this nonstandard
equation of state, leading to a universal prediction for the
anisotropies. We emphasize how the role of the initial
condition term, which represents the density perturbation at
the time of emission, is crucial to this derivation.
Isocurvature perturbations are the natural candidate to
break away from the universal behavior. In Sec. IV, we
focus on a scenario where GW isocurvature perturbations
are generated through the curvaton mechanism. We put
forward our conclusions in Sec. V, comment on the
implications of these results, and also draw some con-
nections with recent literature on the SGWB. The appen-
dices contain supplementary details related to the
calculations in the main text.

II. SGWB ANISOTROPIES: A
LINE-OF-SIGHT FORMULATION

Following [15,16,31], our starting point is the Friedmann-
Lemaitre-Robertson-Walker (FLRW) space-time metric,
including scalar perturbations in the Newtonian gauge,

ds2 ¼ a2ðηÞ½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞdx⃗2�; ð1Þ
1Although the total anisotropy is gauge independent, this

splitting is not. In this paper, we adopt a Newtonian gauge choice,
since it greatly simplifies the analytic calculations. 2This is in line with the intuition expressed in [30].
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with aðηÞ the scale factor in conformal time and Φ, Ψ the
gravitational potentials. The SGWB can be described by the
GW distribution function fðxμ; pμÞ, depending on the GW
position xμ and momentum pμ (we work in the geometrical
optics regime3 [67,68]). The total energy density in GWs is
obtained by integrating over momenta: ρGW ¼ R

d3ppfðpÞ.
It is customary to use the spectral energy density parameter
ΩGWðqÞ, defined as [1]

ΩGW ¼ 1

ρcr

dρGW
d ln q

; ð2Þ

where q ¼ jpja is the comovingmomentum of the gravitons
and ρcr the critical energy density of the universe. The GW
distribution function obeys the following Boltzmann-type
equation [15,16,31],

∂f
∂η

þ ∂f
∂xi

ni þ q
∂f
∂q

�
∂Ψ
∂η

−
∂Φ
∂xi

ni
�
¼ 0: ð3Þ

We can split the homogeneous and isotropic part from an
inhomogeneous perturbation, introducing a quantity Γ such
that

fðq⃗; x⃗Þ≡ f̄ðqÞ − Γðη; x⃗; q; n̂Þ df̄
d lnq

: ð4Þ

In Fourier space, the perturbation Γ obeys the following
linearized equation (primes indicate derivatives with respect
to conformal time):

Γ0 þ ikμΓ ¼ Ψ0 − ikμΦ; μ≡ k̂ · n̂; ð5Þ

with solution [15,16],

Γðη0; k; q; n̂Þ ¼
Z

η0

ηi

dηfδðη − ηiÞ½Φðk; ηÞ þ ΓI�

þΦ0ðk; ηÞ þΨ0ðk; ηÞge−ikμðη0−ηÞ; ð6Þ

where η0 denotes the conformal time today. We denote by
ΓI ≡ Γðηi; k; qÞ the initial condition term and with δðη − ηiÞ
the Dirac-delta function over conformal time. The initial
condition contribution ΓI , first discussed in detail in [15,16],
will play an important role in our derivation:weprovidemore
details on it in Appendix B. The anisotropies of the ΩGW,
commonly denoted as δGW, are related to the quantity Γ by
δGW ≡ ½4 − nΩ�Γ, with nΩ ¼ ∂ ln Ω̄GWðη0; qÞ=∂ lnq para-
metrizing the tilt of the GW energy density.
Since the anisotropy distribution is a function of the sky

location, it is convenient to expand it in spherical harmon-
ics Γðn̂Þ ¼ P

lm ΓlmYlmðn̂Þ and calculate its correlators,

hΓlmΓl0m0 i≡ CΓ
lδll0δmm0 ; ð7Þ

under the assumption of statistical isotropy. The spherical
harmonic coefficients Γlm can be expressed as

Γlm ¼ 4πð−iÞl
Z

d3k⃗
ð2πÞ3 Y

�
lmðk̂ÞTGW

l ðkÞ; ð8Þ

where the function TGW
l ðkÞ combines the initial condition,

the SW, and the ISW terms [15,16],

TGW
l ðkÞ ¼

Z
η0

ηi

dηfδðη − ηiÞ½Φðk; ηÞ þ ΓI�

þΦ0ðk; ηÞ þ Ψ0ðk; ηÞgjl½kðη0 − ηÞ�g: ð9Þ

We provide in Appendix A an alternative derivation of the
above formula, in terms of the observed graviton energy.

III. SGWB ANISOTROPIES FOR ADIABATIC
PRIMORDIAL FLUCTUATIONS

We now consider the case of a universe characterized by
a nonstandard early cosmological history. Such a possibil-
ity is well motivated from models of high-energy physics
(see the discussion in the Introduction). Specifically, we
assume that after inflation, but before radiation domination,
the universe expansion is driven by a cosmic fluid with an
equation-of-state parameter w0 ≠ 1=3. If GWs are gener-
ated (or re-enter the horizon) during this phase,4 they leave
distinct imprints in the frequency profile of the spectrum of
ΩGW, as discussed, for example, in [42,49,60,70].
What is the effect of a w0 ≠ 1=3 on the anisotropies of

the SGWB?We now show that the angular power spectrum
for SGWB anisotropies is insensitive to this nonstandard
phase, as long as primordial fluctuations are adiabatic and
the transition to RD occurs early and rapidly. One might
expect this result to hold, and for GW anisotropies to
closely follow the CMB anisotropies given that the curva-
ture perturbation is conserved on superhorizon scales. We
explicitly show why this is the case and how the inclusion
of the initial condition term is necessary to erase the effects
of any early nonstandard expansion history.
Let us prove our claim using cosmological perturbation

theory, by studying the effects of an early nonstandard
cosmology on the anisotropy parameter Γ in Eq. (6). We
start by noticing that on super-Hubble scales the potential
Φ appearing in Eq. (1) is related to the curvature perturba-
tion in the uniform density gauge ζ by

Φ ¼ −
3ð1þ wÞ
ð5þ 3wÞ ζ; ζ ≡ −Ψ −H

δρ

ρ0
: ð10Þ

3In other words, we consider the propagation of GWs with
wavelength much smaller than the current cosmic horizon.

4The corresponding GW have frequencies within the reach of
pulsar timing arrays and/or GW interferometers, see, e.g., [69].
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Note that here δρ is the perturbation in the total energy
density. One may also define an individual curvature
perturbation for each fluid, ζi by replacing ρ for ρi in
Eq. (10). For adiabatic fluctuations, we have ζi ¼ ζ.
An initial equation-of-state parameter w0 ≠ 1=3 affects

the initial value of Φ through Eq. (10). The subsequent
transition to a RD epoch (w ¼ 1=3) changes the value of
the potential as dictated by the same equation, resulting in
an additional ISW-like effect. The initial condition term for
the GW evolution appearing in Eq. (6) can be computed
with the methods discussed in [71] and is different from the
radiation domination relation ΓI ¼ −Φ=2. In fact, for a
general w and assuming adiabatic primordial perturbations,
we find (see Appendix B)

ΓI ¼ −
2Φ

3ð1þ wÞ ¼
2ζ

5þ 3w
: ð11Þ

Here, we define adiabatic fluctuations of GWs in standard
fashion, with GWs well described by a perfect fluid on
cosmological scales. We collect the results obtained so far
and re-evaluate the anisotropy given by Eq. (8). The quantity
TGW
l ðkÞ of Eq. (9) can be split in two parts as

TGW
l ðkÞ ¼

Z
ηr

ηi

…þ
Z

η0

ηr

…: ð12Þ

Here, ηr the conformal time at the transition from the early
w0 ≠ 1=3 epoch to the standard RD era and the dots refer to
the integrand in Eq. (9). The second term on the right-hand
side of Eq. (12) corresponds to an ISWeffect associated with
the standardΛCDM universe and is common to all scenarios
irrespective of the initial equation of state. We calculate this
term using CAMB [72] assuming thePlanck best-fit values for
the ΛCDM parameters [73].
Notice that η0 ≫ ηr; ηi. For instance, in units of c ¼ 1, and

considering a transition redshift z > 108, ηr is of the order
ηr ≲ 10−4 whereas η0 ∼ 104. Thus, for the large-scale modes
of interest, we always have kη ≪ 1 when ηi < η < ηr. We
can then approximate kðη0 − ηÞ ≃ kη0 in the argument of the
spherical Bessel functions in the first integral of Eq. (12). See
also Fig. 1, which graphically supports this approximation.
As a result, the first term in the right-hand side of Eq. (12) can
be approximated by

TGWð1Þ
l ðkÞ≈ ðΦðηiÞ þΓIðηiÞ þ ½Φðk;ηÞ þΨðk;ηÞ�fi Þjl½kη0�

þOðηr=η0Þ: ð13Þ

Note that this result holds even if there are intermediate
phases between eras with equations of state w ¼ w0

and w ¼ 1=3.
Since after the transition to standard expansion we have a

radiation dominated universe, Eq. (13) reads

TGWð1Þ
l ðkÞ
jl½kη0�

≈ ΓIðw0Þ −Ψðw0Þ þΦð1=3Þ þ Ψð1=3Þ: ð14Þ

The combination of the first two terms in Eq. (14)
corresponds to the definition of the curvature perturbation
associated to gravitational waves, namely,

ΓI −Ψ ¼ −Ψþ 1

4

δρGW
ρGW

≡ ζGW: ð15Þ

It follows that, since the initial conditions are set on
superhorizon scales by a constant ζ, Eq. (14) is insensitive
to the early equation of state of the universe. We can also
check this explicitly using Eq. (10), which yields

ΓIðw0Þ − Ψðw0Þ ¼ −Φ
�
1þ 2

3þ 3w0

�
¼ ζ; ð16Þ

assuming no anisotropic stress. This relation is valid at the
early times, so that Φ ¼ Ψ. Since Φð1=3Þ ¼ −2ζ=3, we
conclude that

TGWð1Þ
l ðkÞ
jl½kðη0Þ�

¼ −
4

3
ζ þ ζ ¼ −

1

3
ζ; ð17Þ

irrespective of the equation of state w0. The quantity TGW
l

defined in Eq. (9) can then be written as

TGW
l ¼

Z
η0

ηr

dη½Φðk; ηÞ0 þ Ψðk; ηÞ0�jl½kðη0 − ηÞ�

−
1

3
ζjl½kη0�: ð18Þ

Thus, the dependence on the equation-of-state parameter
ω0, associated with in the initial phase of expansion, has
completely disappeared from the final result.

FIG. 1. A graphical demonstration of the validity of the
approximation involving the spherical Bessel functions, as used
in Eqs. (13) and (14). We selected k ¼ 0.1 Mpc−1 as an example.
For a given k, the Bessels are essentially constant as long as
kη ≪ 1, roughly corresponding to the duration over which the
mode k remains super-Hubble.
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It is important to stress the essential role of the initial
condition contribution (11) for our arguments, derived
under the assumption of adiabaticity of the primordial
fluctuations. The angular power spectrum of the GW
anisotropy is shown in Fig. 2 for several values of w0,
corroborating our conclusions. It is the presence of the
initial condition contribution in Eq. (6) which removes any
effect of the nonstandard equation of state.
The approximation involving the spherical Bessel func-

tions, used in Eqs. (13) and (14), can be intuitively
understood as follows. In real space, the ISW effect
involves an integral along the GW geodesic; hence, it is
sensitive to the (temporal and spatial) variation of the
potential along the GW line of sight. However, during the
early transition from nonstandard to RD cosmology, GWs
only cover an infinitesimal comoving distance, with
kΔη ≪ 1. Thus, the spatial gradients of the potentials
(∼kΔη ×Φ) can be neglected. Moving to Fourier space,
this implies that the spherical Bessel functions appearing in
the first integral of Eq. (12) can be approximated by a
constant. Small changes in the time of emission—and
hence in the corresponding equation of state—do not leave
any imprints in the anisotropies of the SGWB.
This result holds for GWs generated “early enough,” such

that the large-scale modes of interest are still super-Hubble:
adiabaticity ensures the conservation of the curvature per-
turbation independently of any changes in the equation of

state. Additionally, the nonstandard cosmic phase needs to
occur very early on in the cosmic history for our arguments to
hold. This is not so stringent as an assumption, since the
universe must be radiation dominated already by the time of
BBN,5 which itself happens early (at z ∼ 108 or equivalently
T ∼ 100 keV). In the end,what is important is the equation of
state when the long wavelength mode re-enters the horizon:
as long as that is not affected by the early phase, the
anisotropy spectrum remains unchanged. For the largest
observable scales relevant for gravitational anisotropies, this
happens during radiation or matter domination.
Our result also highlights the importance of properly

accounting for the initial condition term ΓI , one may
otherwise end up with a spurious dependence on the initial
equation of state (as seen in Fig. 2). Let us also briefly
comment regarding the initial time ηi in Eq. (18). In general,
this should be taken to be the time when the GWs are
produced/emitted (in the CMB case, this corresponds to the
time of photon decoupling). The derivation in this section
shows that for a given long wavelength mode k, wemay also
take ηi to be the around the timewhen the mode re-enters the
horizon, i.e., when ζk starts evolving. In the adiabatic case,
both choices lead to the same result, and there is no
dependence on any initial nonstandard equation of state.
A point of difference from the CMB is that changes in the
equation of state at recombination would affect the CMB
anisotropies, especially on intermediate and small angular
scales. On the other hand, GW anisotropies are completely
unaffected by changes in the equation of state at the time of
emission.
Interestingly, our results also have consequences for

early universe phenomena involving Standard Model phys-
ics only, e.g., quantum chromodynamics (QCD) phase
transition. In fact, during the QCD phase transition, which
occurs at temperatures T ∼ 100 MeV, the equation of state
of the universe changes: this fact has interesting implica-
tions for primordial black hole formation [77–79] as well
for the SGWB, see, e.g., [80,81]. But, as demonstrated
above, it does not affect the SGWB anisotropies (CΓ

l) for
adiabatic primordial perturbations. The frequency depend-
ence of the observed CGW

l is still sensitive to the effects of
the QCD phase transition through the ΩGW spectrum since
CGW
l ¼ ð4 − nΩÞ2CΓ

l. However, such an effect in the GW
anisotropy spectrum does not provide any additional
information, with respect to what we can learn from the
frequency profile of ΩGW.

IV. SGWB ANISOTROPIES WITH
ISOCURVATURE CONTRIBUTIONS

Given our robust predictions for the universal properties
of SGWB anisotropies from adiabatic initial conditions, it
is interesting to explore possible consequences of

FIG. 2. The upper plot shows the effect of varying w0 on the
SGWB anisotropies without including the initial condition term.
The lower plot includes the contribution from the initial condition
contribution ΓI .

5See [74–76] for lower bounds of O(MeV) on the reheating
temperature from BBN constraints.
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abandoning the adiabaticity assumption. We do so in this
section, studying the effects of primordial isocurvature GW
perturbations for the SGWB anisotropies in concrete early
universe scenarios. Our aim in this section is not to
specifically examine the consequences of nonadiabatic initial
conditions for a SGWB in the context of a nonstandard
equation of state. Instead, we wish to investigate the
implications of isocurvature initial conditions for SGWB
anisotropies, showing explicitly that they change the uni-
versal predictions we derived in the previous section for the
adiabatic case.
We start by reviewing the definition of GW isocurvature

fluctuations and discuss their consequences on GW anisot-
ropies. First, let us consider a case in which the GW initial
conditions are set during the radiation era. Isocurvature
fluctuations depend on the difference between contribu-
tions to the curvature fluctuation from different species. In
particular, a GW isocurvature component, when defined
with respect to the Standard Model radiation bath, can be
expressed as [24]

SGW;r ¼ 3ðζGW − ζrÞ; ζx ¼ −Ψ −H
δρx
ρ0x

; ð19Þ

where x ¼ fGW; rg.
Equation (19) leads to the relation [24]

ΓI ¼ ζGW þ Ψ ¼ ζr þ
1

3
SGW;r −

2

3
ζ; ð20Þ

where, in RD, Ψ ¼ −2ζ=3. We can now relate the value of
ζr to the curvature perturbation in terms of the total energy
density, assuming that the universe contains only radiation
and the GW background. Namely,

ζ ¼ −Ψ −H
δρ

ρ0
¼ ζr þ

1

3
fGWSGW;r: ð21Þ

We introduce the quantity fGW defined as

fGW ¼ ð1þ wGWÞρGWP
xð1þ wxÞρx

; ð22Þ

with wx the equation-of-state parameter of the component
x. Thus, one obtains as final result6 [24]

ΓI ¼
1

4

δρGW
ρGW

¼ ζ

3
þ 1

3
ð1 − fGWÞSGW;r: ð23Þ

We can further develop this line of reasoning and generalize
these findings to scenarios in which the SGWB is produced
during an epoch when the background energy density is
dominated by a component x with an arbitrary equation of

state w0 (not necessarily radiation), as done in the previous
section. In this case, since fGW ≪ 1, ζ ≈ ζx, we can use
Eq. (10), define the GW isocurvature with respect to a fluid
with equation of state ωx, and obtain

ΓI ≃
2ζx

5þ 3w0

þ 1

3
SGW;x; SGW;x ¼ 3ðζGW − ζxÞ; ð24Þ

generalizing Eq. (23). Notice that Eq. (24) differs from
(11), due to the contribution of the isocurvature perturba-
tions. This term affects the arguments of the previous
section and can lead to significant departures from the
standard adiabatic result of Eq. (18) for the anisotropy
angular correlations.
We now concretely investigate this possibility by building

explicit scenarios leading to isocurvature contributions, with
the aim of analyzing their consequences for the angular
correlations of GW anisotropies. References [24,25] have
previously considered cosmological models producing iso-
curvature GW perturbations from phase transitions during
RD. We develop an alternative perspective for generating
GW isocurvature perturbations from inflation, based on the
curvaton mechanism.

A. Curvaton scenario

The curvaton model [65,66,82,83] posits that during
inflation, besides the inflaton, a spectator field is present, in
the form of a subdominant scalar field χ. This field is
essentially massless and is characterized by a nonvanishing
vacuum expectation value χ�. The curvaton fluctuations δχ,
as developed during inflation, are initially isocurvature. As
cosmic expansion proceeds, at some epoch during the
postinflationary evolution, the curvaton mass overcomes
the Hubble friction, and χ undergoes coherent oscillations
about the minimum of its potential, behaving like dust. At
this stage, the curvaton can constitute the dominant con-
tribution to the energy budget of the universe, with its initial
isocurvature fluctuations converted into curvature fluctua-
tions. After this epoch of curvaton dominance, we assume
that the curvaton decays to Standard Model particles. For
our purposes, in order to derive analytical results, we focus
on the case of instantaneous curvaton decay. This process
can affect the SGWB and CMB anisotropies, to a degree
that depends on the energy budget of the curvaton at the
time of its decay.
We envision two possible mechanisms (pictorially rep-

resented in Fig. 3) for generating GW isocurvature pertur-
bations through a curvaton field:

(i) The curvature perturbation originates from an iso-
curvature-to-adiabatic conversion of primordial fluc-
tuations, after the curvaton decays. Gravitational
waves, on the other hand, are generated during
inflation, or during another early universe phase
well before the curvaton dominates. The curvaton
decays into Standard Model particles, and therefore,

6A similar calculation for CMB temperature fluctuations yields
ΘI ¼ ζ=3 − fGWSGW;r=3, where ΘI are the initial temperature
fluctuations. Thus, the effects of such isocurvature perturbations
on the CMB anisotropies are suppressed by a factor fGW ≪ 1
with respect to their effects on the GW anisotropies [24].
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its initial isocurvature component only survives
within the SGWB fluctuations.

(ii) Gravitational waves are generated through the dy-
namics of the curvaton itself, e.g., small-scale
curvaton fluctuations source GWs as in [84]. The
anisotropies in the GW energy density are then
correlated with the curvaton fluctuations at the
largest cosmological scales. However, in contrast
to case (i), we assume that the curvaton energy
density remains subdominant until its decay. It
follows that the curvaton contribution to the total
curvature perturbation is negligible. This setup
shares some similarities with the dynamics of the
isocurvature mode in scenarios including the effects
of dark radiation [85] and phase-transitions [25].

Let us now proceed to concretely analyze these configu-
rations (see Refs. [86–89] for studies on CMB fluctuations
when the curvaton mechanism is in place). We assume that,
after inflation, the universe contains three species of fluids.
Their energy densities are denoted by ρx, and their equations
of state via wx, with x ¼ fr; χ;GWg. The first fluid ρr,
corresponding to radiation, dominates the universe immedi-
ately after inflation.7 The second fluid is the curvaton, with
energy density ρχ : as explained above, this field decays at

some epoch after inflation. The third fluid corresponds to the
GW energy density, ρGW, which can be treated as a
subdominant (GW) radiation component throughout the
cosmic evolution. Each component is characterized by an
associated curvature perturbation given by

ζx ¼ −Ψþ δρx
3ð1þ wxÞρx

: ð25Þ

The curvature perturbation ζ on uniform density slices is
given by Eq. (10). The isocurvature fluctuation, as defined in
terms of two distinct components x and y, is defined similarly
as above, as

Sx;y ¼ 3ðζx − ζyÞ: ð26Þ

The expressions for the quantities ζx and Sx;y are gauge
independent. Thanks to this property, we are then free to
evaluate the initial conditions in a uniform curvature slicing,
finding

ζχ;ini ¼
1

3ð1þ wχÞ
�
δρχ
ρχ

�
�
: ð27Þ

The subscript � means that we evaluate the quantities at
horizon crossing during inflation. For the sake of generality,
we do not fix a specific equation of state for the curvaton χ
contribution.8 We assume that the inflaton decays into
radiation, implying that ζr;ini coincides with the curvature
fluctuation generated during the inflationary process.
Since all components individually obey an energy

conservation condition, and are not characterized by non-
adiabatic pressure, each of the three curvature perturbations
ζx are individually conserved during cosmic evolution
[86,87], except at the time of curvaton decay. Assuming
an instantaneous curvaton decay, we compute ζ right
before and after the decay, which we, respectively, denote
by ζbdec and ζadec. We assume a uniform density slicing
(
P

x δρx ¼ 0). Using δρx=ρx ¼ 3ð1þ wxÞðζx − ζÞ, we find

ζbdec ¼ fbχζχ;ini þ fbGWζGW;ini þ ð1 − fbχ − fbGWÞζr;ini: ð28Þ

The quantity fχ is defined as fGW in Eq. (22) but replacing
the subscript GW for χ. The notation before (indicated with
the superscript b) and after (superscript a) is important,
since the curvaton can decay into standard radiation, and/or
gravitational waves. In fact, the fraction faGW can be
different than fbGW, depending on how much GW energy
is generated in the decay process of χ.
Hereafter, for concreteness, we assume fbGW ≪ 1 and

neglect its contribution. For simplicity, we also assume that
there is no initial isocurvature fluctuation between radiation

FIG. 3. Illustration of the curvaton mechanism and its impli-
cations for initial GWB isocurvature fluctuations. We show the
logarithm of energy density of a given fluid (standard radiation r,
GWs, and the curvaton χ) normalized to the total energy density
as a function of e-folds or ln a. Note that we assume wχ ¼ 0, and
we take arbitrary initial background densities for illustrative
purposes. At some point, the curvaton decays either to standard
radiation [case (i)] or to GWs [case (ii)]. The fraction of the
curvaton at the time of decay for (i) is fχ ∼ 1 while for (ii) is
fχ ≪ 1. Then, the initial isocurvature fluctuations due to the
curvaton are either transferred to standard radiation in case (i) or
to GWs in case (ii). Due to the asymmetric decay of the curvaton,
there remains an isocurvature component between radiation and
GWs, labeled SGW;r.

7One can take a more general approach and consider an
arbitrary equation of state after inflation. This possibility does not
qualitatively change our results; hence, we do not pursue it any
further.

8In general, δρχ is an arbitrary function of χ; e.g., for a
potential m2

χχ
2, one finds δρχ=ρχ ¼ 2δχ=χ�.
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and gravitational waves, so ζr;ini ¼ ζGW;ini (unless other-
wise stated). Notice that the curvature perturbation after the
decay is given by

ζadec ¼ faGWζ
a
GW;dec þ ð1 − faGWÞζar;dec: ð29Þ

In Appendix C, we present further details on the evolution
of this system.
Isocurvature fluctuations are constant on superhorizon

scales, except at the time of curvaton decay. In fact, the
resulting isocurvature depends on the end products of the
curvaton annihilation. In what follows, we perform two
separate studies of scenarios (i) and (ii).

1. Case (i)

In this case, the curvaton field decays into radiation. In
combination with the conservation condition for ζ across the
instantaneous decay, this implies that ζar;dec ≈ ζadec ≈ ζbdec.
The resulting isocurvature contribution SGW;r after the
curvaton decays is

SaGW;rjdec≡3ðζaGW;dec−ζar;decÞ≈3ðζGW;ini−ζbdecÞ≈fbχSGW;χjini;

ð30Þ

where we use Eq. (28). We learn that the initial curvaton
isocurvature fluctuation is inherited by the GW background,
but with a suppression factor fχ. This is because a fraction fχ
of the total radiation is made out of the decay of the curvaton
χ, which is characterized by an initial isocurvature fluc-
tuation SGW;χ with respect to GW.
To better appreciate the consequences of these isocur-

vature contributions for SGWB anisotropies, we focus on
an explicit, simple example. We set initial conditions
ζχ;ini ≫ ζr;ini ¼ ζGW;ini (the equality assumes initial adia-
batic GW fluctuations after inflation). Then, at the time of
curvaton decay to radiation, we have

ζar;dec ≃ fbχζχ;ini: ð31Þ

In this example, the contribution of radiation to the
curvature fluctuation after curvaton decay, ζar , is also
responsible for sourcing CMB fluctuations. For this reason,
the value of the amplitude fbχζχ;ini is fixed by observations.
The curvaton equation of state enters this amplitude via
Eq. (27), although its effect is degenerate with those of fχ
and δρχ=ρχ . A measurement of the anisotropies would then
constrain the combination fχð1þ 3wχÞ−1δρχ=ρχ .
We focus on SGWB modes re-entering the horizon

during radiation domination for which we use Eq. (23)
and fGW ≪ 1 to obtain

ΓI ≃
1

3
ζar;dec þ

1

3
SaGW;r ¼

1

3
ζar;dec þ

1

3
fbχSGWχ;ini

≃ −
2

3
fbχζχ;ini ¼ −

2

3
ζar;dec; ð32Þ

where ΓI are the GW fluctuations after the decay of the
curvaton and the start of standard big bang cosmology.
Note that in this case the initial condition term is signifi-
cantly different from the adiabatic case of Eq. (11) where
Γad ¼ ζ=3. Now, evaluating the total anisotropy with these
modified initial conditions using Eq. (9) and the subsequent
results of Sec. III, we obtain

TGW
l ¼ −

4

3
ζar;dec × jl½kη0�

þ
Z

η0

ηr

½Φðk; ηÞ0 þΨðk; ηÞ0�jl½kðη0 − ηÞ�: ð33Þ

The SGWB map is then also completely correlated with
the CMB in this case since both are sourced by the initial
fluctuations of χ. This cross-correlation is given by

hΓlmΔ
TðEÞ
l0m0 i≡ CΓTðEÞ

l δll0δmm0 ; ð34Þ

where ΔTðEÞ
lm denotes the spherical harmonic coefficients of

the CMB temperature or E-mode polarization anisotropies.
We also see that the first term on the right-hand side of
Eq. (33) is 4 times the adiabatic result of Eq. (18) while the
second term is the same. Since the first term, which is a
SW-like term, dominates on large angular scales, an
SGWB × CMB correlation which, on the largest scales
is 4 times larger compared to the standard adiabatic result
would strongly hint toward the simplest curvaton scenario.
One can also understand this from Fig. 4 by noticing that

FIG. 4. The angular power spectrum of the SGWB anisotropies
for cases (i) and (ii). For case (i), the isocurvature amplitude is
fixed [see Eq. (33)]. For case (ii), we have chosen jζχ j ¼ 10jζrj
and wχ ¼ 0. The adiabatic prediction and a scenario with the sign
of SGW;r opposite to that of case (i) are also shown for
comparison. The quantity ζr is determined by the CMB ampli-
tude Pζr ¼ 2.09 × 10−9 and the spectral tilt ns ¼ 0.9649. The
shaded regions denote the cosmic variance limited error bars [90].
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the larger SW term in this case leads to nearly flat spectrum
for the CΓ

l, in contrast to the adiabatic case where the ISW
bump is visible at large l (see also [32]).

2. Case (ii)

We proceed with the scenario (ii), where only the
curvaton sources GWs while its energy density remains
subdominant. In this case, if all of the curvaton energy
density goes into GWs, we have that δρGW;dec ≈ δρχ;dec. We
also assume ζχ;ini ≫ ζr;ini, but fbχζχ;ini ≪ ζr;ini, which is the
most interesting phenomenological case. With these
assumptions, we arrive at (see Appendix C),

Sa;ðiiÞGW;rjdec ≡ 3ðζaGW;dec − ζar;decÞ ≈ 3ðζaGW;dec − ζbr;decÞ

≈ 3
ð1þ wχÞ
ð1þ wrÞ

ζχ;ini; ð35Þ

where we use the following relations, valid in a uniform
density slicing, assuming ζadec ¼ ζbdec ≪ ζχ;ini:

ζaGW;dec ¼ ζadec þ
1

3ð1þ wrÞ
δρaGW
ρaGW

≈
1

3ð1þ wrÞ
δρbχ
ρbχ

≈
ð1þ wχÞ
ð1þ wrÞ

ζχ;ini: ð36Þ

Essentially, all the GW isocurvature components originate
from the large curvaton fluctuations; hence, we need to take
into account the change in equation of state. Notice that the
energy density of the curvaton is subdominant, and there-
fore, it does not significantly affect the total curvature
perturbation.
In general, not all of the curvaton energy density is

transferred to GWs. For GWs generated by means of the
curvaton decay, it follows that

TGW
l ≈

�ð1þ wχÞ
ð1þ wrÞ

ζχ;ini −
1

3
ζar;dec

�
jl½kη0�

þ
Z

η0

ηr

½Φ0ðk; ηÞ þΨ0ðk; ηÞ�jl½kðη0 − ηÞ�; ð37Þ

where we used that fbχζχ;ini ≪ ζr;ini; hence, CMB fluctua-
tions are set entirely by ζr. In case (ii) one can have large
isocurvature fluctuations, i.e., ζχ;ini ≫ ζar;dec, while having a
small impact on the CMB since fbχ ≪ 1. In this case, the
correlation between the CMB and SGWB anisotropies is
much smaller, in contradistinction to case (i).9

Importantly, a large amount of GW isocurvature requires
fbχ ≪ 1, which can lead to large non-Gaussianities in the
SGWB anisotropies, as it would happen in the standard
curvaton scenario [87]. This since as fbχ decreases, the
expectation value χ� should also decrease (for a fixed
curvaton mass); as ζχ is large, it implies that higher order
terms in δχ=χ� become more relevant. We leave a detailed
study of this scenario for future work. Such non-Gaussian
signatures are also expected for scenarios similar in spirit to
this case (ii), i.e., GWs generated by subdominant fields
with large isocurvature fluctuations. This has already been
pointed out in [25].

3. A summarizing plot

In Fig. 4, we plot the angular power spectrum of the
anisotropies for cases (i) and (ii), as given by Eqs. (33) and
(37), respectively. We clearly notice that the presence of the
isocurvature perturbation leads to a strong departure from
the adiabatic relation of Fig. 2. In both cases, the much
larger isocurvature component significantly enhances the
SGWB anisotropies relative to the adiabatic case. For the
same reason, the spectrum is essentially flat across all
scales, similar to the large-scale SW plateau in the CMB.
Moreover, the amplitude and tilt for case (i) is fixed but for
case (ii) it is not. In the latter case, the l dependence of CΓ

l
depends crucially on the spectral shape of Pζχ ðkÞ (see [25]
for an example). The plot also includes a more phenom-
enological setup where SGW;r ¼ 3ζr, which corresponds to
an isocurvature component equal in magnitude but opposite
in sign compared to case (i). In this scenario, the iso-
curvature is anticorrelated with the GW, leading to a
reduction in power on large scales compared to (i) and,
for the same reason, to an anticorrelation between the
SGWB and CMB maps. One could realize such anticorre-
lation if, for example, the initial isocurvature fluctuations of
the curvaton are already anticorrelated with initial adiabatic
fluctuations. This is possible within general two-field
models of inflation [91–93], whose dynamics are different
from the simplest curvaton scenario. We leave this for
future work.

V. DISCUSSION AND CONCLUSIONS

There exist a wide variety of gravitational wave pro-
duction mechanisms in the early universe. The ever-grow-
ing interest in such possibilities relies on the discovery
potential associated with the detection of GWs of cosmo-
logical origin. From learning the energy scales at which the
“cosmological collider” operates (e.g., during inflation), to
the possibility of testing beyond-the-Standard-Model phys-
ics (e.g., via first order phase transitions), from key clues on
preheating dynamics to important lessons on cosmic strings
and possibly dark matter, a great deal of progress in our
understanding of the early universe will result from the
detection and characterization of a primordial GW signal.

9SGWB and CMB anisotropies could instead have a larger
correlation if fbχ ≪ 1, and contrary to what we assumed just
above Eq. (35), we have ζbχ ≪ ζbr . Under these assumptions one
finds, using Eq. (C2), that SGW;r ≈ −9ð1þ wχÞζr=4. SGWB
anisotropies are then larger by approximately a factor 3 with
respect to the CMB for wχ ¼ 0.

NEW UNIVERSAL PROPERTY OF COSMOLOGICAL … PHYS. REV. D 107, 103502 (2023)

103502-9



It is then crucial to develop a most effective toolbox
aimed at identifying (1) the astrophysical vs cosmological
nature, and (2) the precise origin of a given GW stochastic
background. The study of the spectral shape, chirality, and
non-Gaussianity of the SGWB is certainly part of the
standard “characterization algorithm.” Our focus in this
work has been on another critical property of the spectrum:
the presence of an anisotropic component.
GW anisotropies provide an additional handle on infla-

tionary models and interactions, on the presence of large-
scale inhomogeneities in the early universe, and so on. The
central question we set out to address has been on the
possibility of testing the equation of state (EoS) of the early
universe through its effect on anisotropies. A changing EoS
is motivated for example at the QCD phase transition. More
in general, a nonstandard EoS may result from the coherent
oscillations of a scalar field during a period of kination and
several other well-motivated scenarios.
Interestingly, we find that, under specific assumptions, a

universal behavior is in place: GW anisotropies are insen-
sitive to the EoS of the early universe. This robustness of
the anisotropies profiles to deviations from a standard
evolution history holds if the transition to radiation domi-
nation occurs sufficiently early and provided that primor-
dial fluctuations are adiabatic. The fact that these are
relatively mild assumptions underscores the wide range
of validity of the universal behavior we uncovered.
Conversely, deviations from the universal formula point

clearly to the presence of isocurvature fluctuations in the
early evolution of the universe. We exploited this notion in
two specific realizations of the well-known curvaton
scenario, obtaining in case (i) up to a fourfold enhancement
(with respect to the adiabatic case) of the GW anisotropies
due to the presence of the isocurvature fluctuations. This
amounts to over an order of magnitude increase in terms of
the anisotropies angular power spectrum. The fact that the
effects of the isocurvature perturbations are significant on
large angular scales is also remarkable in that such
scenarios may be tested in the future [94], despite the
limited angular resolution of GW detectors [95–97].
Whenever the curvaton comes to give a significant

contribution to the curvature perturbation, and if the leading
GWs are generated independently during inflation, we
found [case (i)] that cross-correlations of SGWB anisot-
ropies with those of the CMB can also be used as an
extremely effective probe of the curvaton hypothesis. This
provides an additional instrument in our curvaton diag-
nostics that is complementary to, for example, CMB
constraints on the nonlinear parameter fNL.
It will be important to further explore deviations from the

universal condition we identified here in several directions,
going well beyond the (simplest) curvaton scenario. We
plan to study the effects of isocurvature modes on GW
anisotropies in a variety of interesting early universe setups
and present our findings in future work.
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APPENDIX A: HEURISTIC DERIVATION OF
GWB ANISOTROPIES

In this appendix, we provide a simpler, less rigorous,
derivation of the GWB anisotropies, which is equivalent to
the collisionless Boltzmann formulation. We follow the
analogy of CMB anisotropies given in Sec. 2.5 of Ref. [98].
Consider that we receive from a direction ni a collection

of (massless) gravitons with energy E ¼ −kμuμ which were
emitted in the early universe and that propagated through a
perturbed FLRW universe. kμ is the 4-momentum of the
graviton which follows null geodesics, and uμ is the
observer’s velocity. If we compare the energy of the emitted
graviton with the received one in the Newton (shear-free)
gauge, we have that [98]

Eobs

Eemit
¼ aemit

aobs

�
1 −

δq
q

����
emit

− δðkμuμÞobsemit

�

¼ 1

1þ z

�
1 −

δq
q

����
emit

−
δz

1þ z

�
; ðA1Þ

where we assumed initial energy fluctuations δq at the
surface of emission, and we defined

δz
1þ z

¼ ½Vini þΦ�obsemit −
Z

obs

emit
dλðΨ0 þΦ0Þ: ðA2Þ

In Eq. (A2), λ is the affine parameter of the null geodesics,
and Vi is the 3-velocity of the fluid.
We now relate the initial graviton energy fluctuations to

the Boltzmann formalism of the main text. We note that we
do not detect single gravitons but a distribution of energy
density, represented by the distribution function fðx; qÞ.
The energy density of the GW background is then given by

ρGWðx; ηÞ ¼ a−4ðηÞ
Z

d3qqfðx; q; ηÞ; ðA3Þ

where we set today’s scale factor to a0 ¼ 1. Note that at the
background level we have that f ¼ f̄ðqÞ, and the time
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dependence in (A3) only enters through the scale factor and
thus satisfies energy conservation, i.e., ρ̄0GW þ 4Hρ̄GW ¼ 0.
From Eq. (A3), we see that any small initial inhomogeneity
in the distribution function, say fðx; q; ηiÞ ¼ f̄ðq; ηiÞ þ
δfðx; q; ηiÞ, can be thought of an inhomogeneous distribu-
tion of graviton momentum as

fðx; q; ηiÞ ¼ f̄ðqþ δq; ηiÞ ¼ f̄ðqÞ þ ∂f̄
∂q

δq: ðA4Þ

Comparing with the definition of Γ from Eq. (4), that is,

δf ¼ −q ∂f̄
∂qΓI, we identify

δq
q

����
emit

≡ −ΓI: ðA5Þ

With this result and Eq. (A2), we arrive at the conclusion that
the observed graviton’s energy anisotropies are given by

Γ ¼ δ

�
Eobs

Eemit

�
¼ ΓI − ½Vini þΦ�obsemit þ

Z
obs

emit
dλðΨ0 þΦ0Þ:

ðA6Þ

This is exactly the same as Eq. (6) if one neglects the
direction-independent monopole at the location of the
observer, the dipole due to our motion, and use that on
superhorizon scales the initial velocities are suppressed by a
factor k2=H2 and so are negligible. The last step is to use the
fact that we do not detect graviton’s energies but the spectral
density of the GWB, which yields

δGW ¼ δΩGW

ΩGW
¼ q4δf

ΩGW
¼ ð4 − nΩÞΓ; ðA7Þ

where we used that ρGW ¼ 3H2M2
pl

R
d ln qΩGW.

APPENDIX B: DERIVATION OF INITIAL
CONDITION TERM

The initial condition ΓI is a model-dependent term that
represents the perturbation to the GW distribution function

at the time of emission/production. Its monopole Γð0Þ
I ¼R

d2n̂ΓI=4π represents the initial GW density perturbation
and is the counterpart of the CMB quantity Θ0, the
monopole of the photon density (or equivalently temper-
ature) fluctuation at recombination [99].
We now derive the contribution to the GW initial

condition term that arises from adiabatic primordial per-
turbations. In our analysis, we neglect any higher order

terms and take ΓI ¼ Γð0Þ
I since the large-scale modes of

interest are super-Hubble at the initial time, suppressing
these higher order terms.
One can use the 00-component of the perturbed

Einstein’s equations in the Newtonian gauge to get [99],

3H2Φ ¼ −4πGa2ρδ ⇒ δ ¼ −2Φ; ðB1Þ

where δ denotes the density contrast for the dominant
component of the universe. Then, by adiabaticity,

δρGW
ð1þ wGWÞρGW

¼ δ

ð1þ wÞ ¼ −
8Φ

3ð1þ wÞ ; ðB2Þ

and finally using the results of Ref. [71],

δρGW
ρGW

¼ 4ΓI; ðB3Þ

which holds in this case since ΓI is independent of the GW
frequency. Note that the exact time when the initial
conditions should be set for GWs is either at GW
generation (if GWs are generated by subhorizon processes)
or some time after horizon re-entry.
Alternatively, one can generalize the method presented in

Sec. 2.1.1 of [71] to arbitrary w and obtain the same result
(see also [100] for the original application to the CMB).

APPENDIX C: GENERAL FORMULAS FOR THE
CURVATON GW ISOCURVATURE

Here, we present the exact formulas for the GW isocur-
vature after curvaton decoupling without assuming any type
of initial conditions. We consider case (i) and (ii) separately
first, and then, we provide the general formula.
First, for case (i), we have that the curvaton only decays

to radiation, and therefore, by continuity, we have that after
the curvaton decays ρar ¼ ρbr þ ρbχ and δρar ¼ δρbr þ δρbχ .
The notations b and a, respectively, refer to evaluation just
before and after the curvaton decays. With these relations,
one can find that

Sa;ðiÞGWr ¼ 3ðζaGW;dec − ζar;decÞ

¼ −3
ρbχ þ ρbr þ ρbGW

ρbχ þ ρbr
½ð1 − fbGW − fbχÞζr;ini

þ fbχζχ;ini − ð1 − fbGWÞζGW;ini�: ðC1Þ

In deriving this equation, we made use of the definition of
the curvature perturbation (25). In the main text, we studied

the case fbGW ≪ 1, which leads to Sa;ðiÞGWr;dec ≈ −3fbχðζχ;ini −
ζr;iniÞ. Note that if all curvature perturbations are equal, then
isocurvature vanishes as it should.
We proceed similarly for case (ii), using that the curvaton

now decays only to GWs, that is, ρaGW ¼ ρbGW þ ρbχ and
δρaGW ¼ δρbGW þ δρbχ . Then, we obtain
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Sa;ðiiÞGWr;dec ¼ 3ðζaGW;dec − ζar;decÞ

¼ 3
ρbχ þ ρbr þ ρbGW

ρbχ þ ρbGW
½fbχζχ;ini

þ fbGWζGW;ini − ðfbχ þ fbGWÞζr;ini�: ðC2Þ

In the case when GWs are mainly sourced by the curvaton,
so that fbGW ≪ 1, and the curvaton has large fluctuations
ζχ ≫ ζr (but fbχζχ;ini ≪ ζr;ini because ρbχ ≪ ρbr ), we find

that Sa;ðiiÞGWr;dec ≈ 3
ð1þwχÞ
ð1þwrÞ ζχ;ini.

In the most general case, where only a fraction σ of the
curvaton energy decays into GWs, i.e., ρaGW ¼ ρbGW þ σρbχ ,
we find that

SaGWr;dec ¼ 3ðζaGW;dec − ζar;decÞ

¼ 3
ðρbχ þ ρbr þ ρbGWÞ2

ðρbGW þ σρbχÞðρbr þ ð1 − σÞρbχÞ

×

�
ðσωb

r − ð1 − σÞωb
GWÞfbχζχ;ini

þ
�
ωb
r þ

1þ wχ

1þ wr
ð1 − σÞωb

χ

�
fbGWζGW;ini

−
�
ωb
GW þ 1þ wχ

1þ wr
σωb

χ

�
fbr ζr;ini

�
; ðC3Þ

where we have defined

ωx ≡ ρx
ρχ þ ρr þ ρGW

����
dec

: ðC4Þ

It is straightforward to check that we recover case (i) when
σ → 0 and case (ii) when σ → 1. We also checked that such
formula for GW isocurvature vanishes for adiabatic initial
conditions.

APPENDIX D: SCALAR INDUCED GWs AND
THE SGWB SPECTRAL SHAPE

In this appendix, we provide an example of a scenario
where the same spectral shape can be generated via
different production mechanisms. Our example is that of
a peaked broken power law spectral shape, which can
arise in SGWB from first order phase transitions [101],
kination [42], cosmic domain walls [102], and scalar
induced GW. Importantly, even if the first three mecha-
nisms produce SGWBwith distinguishable spectral shapes,
i.e., different power law indices on either side of the peak,
we demonstrate here that for each of the three mechanisms,

one can produce the same spectral shape with scalar
induced GW.
The induced GW spectrum is approximately a broken

power law with a peak in two cases: (a) the primordial
spectrum is a broken power law, and (b) the equation of
state of the primordial universe is negative [55,60,103,104].
To illustrate our point regarding the degeneracy in the
spectral shape, it suffices to focus only on case (a). In case
(a), if the primordial spectrum around the peak scale kpk is
given by

Pζ ∝

( ð k
kpk
ÞnIR ðk ≪ kpkÞ

ð k
kpk
Þ−nUV ðk ≫ kpkÞ;

ðD1Þ

then the induced GW spectrum is roughly

ΩGW ∝

( ð k
kpk
ÞnindIR ðk ≪ kpkÞ

ð k
kpk
Þ−nindUV ðk ≫ kpkÞ;

ðD2Þ

where

nindIR ¼
�
2nIR − 2b ðnIR < 3=2Þ
3 − 2jbj ðnIR > 3=2Þ ðD3Þ

and

nindUV ¼
�
2nUVþ2b ðnUV < 4ð2ÞÞ
4ð2ÞþnUVþ2b ðnIR > 4ð2ÞÞ; ðD4Þ

where we defined

b ¼ 1 − 3w
1þ 3w

: ðD5Þ

The values in parentheses in Eq. (D4) correspond to the
case c2s ∼ 1 [104]. In the limiting cases of the inequalities,
as well as in the cases of nIR > 3=2 and w ¼ 1=3,
logarithmic corrections appear. For the purpose of this
discussion, we neglect these effects here.
We see that for different values of the parameters b, cs,

nIR, and nUV, one can easily obtain different UV and IR
scalings of ΩGW (i.e., nindUV and nindIR ) and mimic the GW
signal from the other production mechanisms mentioned
above. Thus, in the absence of independent (non-GW)
constraints on the scalar power spectrum on small scales,
one cannot unambiguously determine the source of the
SGWB from the reconstruction of the spectral shape alone.
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