10 research outputs found

    Identification of O-Linked Glycoproteins Binding to the Lectin Helix pomatia Agglutinin as Markers of Metastatic Colorectal Cancer

    Get PDF
    Background Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer. Methodology In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens. Results Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002). Conclusion Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer

    2-DE analysis of <i>O-</i>linked glycoproteins affinity purified using HPA.

    No full text
    <p>Proteins pooled from LN+ve CRC tissue specimens were affinity purified with HPA and separated by isoelectric focussing on a pH 4–7 IPG strip and then by SDS-PAGE (12%) and visualised using colloidal Coomassie Blue. Inset: annexin 4/5 as indicated in LN+ve compared with LN-ve CRC tissue specimen protein pools. The proteins identified in the MALDI-MS analysis are indicated.</p

    HPA lectin and P53 immunohistochemistry of CRC tissue specimens.

    No full text
    <p>Left: light microscopy images of colorectal tissue sections (5 ÎĽm) incubated with HPA (10 ÎĽg/ml) and streptavidin-HRP (5 ÎĽg/ml) or incubated with the anti-P53 antibody (1:200) and biotinylated horse rabbit anti-mouse IgG (1:1000) as indicated. The brown colouration indicates the peroxidase reaction with DAB/H<sub>2</sub>O<sub>2</sub>, the nuclei were counterstained with haematoxylin (blue). Magnification X400. Right: Table showing results for HPA, P53 and <i>KRAS</i> analysis.</p

    Identification, cloning and characterization of two N-acetylgalactosamine binding lectins from the albumen gland of Helix pomatia

    No full text
    Helix pomatia agglutinin (HPA), the lectin from the albumen gland of the Roman snail, has been used in histochemical studies relating glycosylation changes to the metastatic potential of solid tumors. To facilitate the use of HPA in a clinical (diagnostic) setting, detailed analysis of the lectin, including cloning and recombinant production of HPA is required. A combination of isoelectric focusing, amino acid sequence analysis and cloning revealed two polypeptides in native HPA preparations (HPAI and HPAII) both consistent with GalNAc binding lectins of the H-type family. Pairwise sequence alignment showed that HPAI and HPAII share 54% sequence identity while molecular modelling using SWISS-MODEL suggest they are likely to adopt similar tertiary structure. The inherent heterogeneity of native HPA highlighted the need for production of functional recombinant protein; this was addressed by preparing His-Trx tagged fusion products in Escherichia coli Rosetta-gami B (DE3) cells. The recombinant lectins agglutinated human blood group A erythrocytes while their oligosaccharide specificity, evaluated using glycan microarrays, showed they predominantly bind glycans with terminal alpha-GalNAc residues. Surface plasmon resonance with immobilized GalNAc-BSA confirmed that recombinant HPAI and HPAII bind strongly with this ligand (Kd = 0.60 nM and 2.00 nM, respectively) with a somewhat higher affinity to native HPA (Kd = 7.67 nM). Recombinant HPAII also bound the breast cancer cells of breast cancer tissue specimens in a similar manner to native lectin. The recombinant HPA described here shows important potential for future studies of cancer cell glycosylation and as a reagent for cancer prognostication

    A novel approach to determining the affinity of protein-carbohydrate interactions employing adherent cancer cells grown on a biosensor surface

    No full text
    The development of biological agents for the treatment of solid tumours is an area of considerable activity. We are pursuing carbohydrate-binding proteins (lectins) in a strategy aimed at targeting cancer-associated changes in glycosylation. To evaluate lectin–cancer cell interactions we developed a novel cell biosensor in which binding events take place at the cell surface, more closely mimicking an in vivo system. Metastatic, SW620, and non-metastatic, SW480, colorectal cancer cells were grown on the surface of a tissue-culture compatible polystyrene coated biosensor chip and housed in a quartz crystal microbalance (QCM) apparatus, the kinetics of binding of a diverse range of lectins was evaluated. The lectin Helix pomatia agglutinin (HPA) has been shown to bind aggressive metastatic cancer and was produced in recombinant form (His- and RFP-tagged). The affinity of HPA was in the nanomolar range to the metastatic SW620 cells but was only in the micromolar range to the non-metastatic SW480. Overall, the dissociation constant (KD) of the lectins tested in the new cell biosensor system was an order of magnitude lower (nanomolar range) than has generally been reported with systems such as QCM/SPR. This new cell-biosensor enables molecular interactions to be studied in a more relevant environment. An intrinsic problem with developing new biological therapies is the difficulty in determining the affinity with which proteins will interact with intact cell surfaces. This methodology will be of interest to researchers developing new biological approaches for targeting cell surfaces in a wide range of diseases, including cancer

    Phenotypic Screen with the Human Secretome Identifies FGF16 as Inducing Proliferation of iPSC-Derived Cardiac Progenitor Cells

    No full text
    Paracrine factors can induce cardiac regeneration and repair post myocardial infarction by stimulating proliferation of cardiac cells and inducing the anti-fibrotic, antiapoptotic, and immunomodulatory effects of angiogenesis. Here, we screened a human secretome library, consisting of 923 growth factors, cytokines, and proteins with unknown function, in a phenotypic screen with human cardiac progenitor cells. The primary readout in the screen was proliferation measured by nuclear count. From this screen, we identified FGF1, FGF4, FGF9, FGF16, FGF18, and seven additional proteins that induce proliferation of cardiac progenitor cells. FGF9 and FGF16 belong to the same FGF subfamily, share high sequence identity, and are described to have similar receptor preferences. Interestingly, FGF16 was shown to be specific for proliferation of cardiac progenitor cells, whereas FGF9 also proliferated human cardiac fibroblasts. Biosensor analysis of receptor preferences and quantification of receptor abundances suggested that FGF16 and FGF9 bind to different FGF receptors on the cardiac progenitor cells and cardiac fibroblasts. FGF16 also proliferated na&iuml;ve cardiac progenitor cells isolated from mouse heart and human cardiomyocytes derived from induced pluripotent cells. Taken together, the data suggest that FGF16 could be a suitable paracrine factor to induce cardiac regeneration and repair

    Metabolite profiles of interacting mycelial fronts differ for pairings of the wood decay basidiomycete fungus, Stereum hirsutum with its competitors Coprinus micaceus and Coprinus disseminatus

    No full text
    The paper presents the first proof-of principle study of metabolite profiles of the interacting mycelial fronts of a wood decomposer basidiomycete, Stereum hirsutum, paired with two competitor basidiomycetes, Coprinus disseminatus and C. micaceus, using TLC and GC-TOF-MS profiling. GC-TOF-MS profiles were information rich, with a total of 190 metabolite peaks detected and more than 120 metabolite peaks detected per sample. The metabolite profiles were able to discriminate between the interactions of S. hirsutum with the two species of Coprinus. In confrontation with C. micaceus, where S. hirsutum mycelial fronts always overgrew those of C. micaceus, there were down-regulations of metabolites in the interaction zone, compared to monocultures of both S. hirsutum and C. micaceus. In contrast, in pairings with C. disseminatus, whose mycelia overgrew those of S. hirsutum, there were some up-regulations compared with monoculture controls, the majority of the metabolites being characteristic of the S. hirsutum monoculture profile. These differences indicate that up-regulation of metabolites in the mycelia of S. hirsutum may be connected to a defensive role or to stress. The results also show proof of principle for the employment of metabolic profiling for biological discovery studies of metabolites produced by fungi that could be applied to natural product screening programmes
    corecore