11 research outputs found

    Polyethyleneimine functionalized nano-carbons for the absorption of carbon dioxide

    Get PDF
    The evolution of nanotechnology over the past 20 years has allowed researchers to use a wide variety of techniques and instruments to synthesize and characterize new materials on the nano scale. Due to their size, these nano materials have a wide variety of interesting properties, including, high tensile strength, novel electronic and optical properties and high surface areas. In any absorption system, a high surface areas is desirable, making carbon nano materials ideal candidates for use in absorption systems. To that end, we have prepared a variety of nano carbons, single walled carbon nanotubes, multi walled carbon nanotubes, graphite intercalation compounds, graphite oxide, phenylalanine modified graphite and fullerenes, for the absorption of carbon dioxide. These nano carbons are functionalized with the polymer, polyethyleneimine, and fully characterized using Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, solid state 13 C NMR, and thermogravimetric analysis. The carbon dioxide absorption potential of the PEI-nano carbons was evaluated using thermogravimetric analysis at standard room temperature and pressure. We have demonstrated the high gravimetric capacity of carbon dioxide capture on these materials with extremely high capacities for PEI-C 60

    Sub-micron proximal probe thermal desorption and laser mass spectrometry on painting cross-sections

    Full text link
    Cross-sections containing organic dyes are used to demonstrate sub-micron atomic force microscopy thermal desorption (AFM-TD), followed by laser mass spectrometry

    Sub-micron proximal probe thermal desorption and laser mass spectrometry on painting cross-sections (vol 6, pg 8940, 2014)

    No full text
    Correction for ‘Sub-micron proximal probe thermal desorption and laser mass spectrometry on painting cross-sections’ by Shawn C. Owens et al., Anal. Methods, 2014, 6, 8940–8945

    Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot

    No full text
    International audienceFormation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (μ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (μ-FTIR ≈ 102μm3, O-PTIR ≈ 10-1μm3, PTIR ≈ 10-5μm3). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often â 0.1 μm3) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (≈1530-1558 cm-1) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at ≈1596 cm-1. We show that the high signal-To-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices

    Intrinsically disordered peptides enhance regenerative capacities of bone composite xenografts

    No full text
    Biomaterial scientists design organic bone substitutes based on the biochemical properties of the mimicked tissue to achieve near native functionality. Several non-collagenous proteins in bone are known as intrinsically disordered proteins (IDPs), as they lack detectible ordered domains and a fixed 3D structure under physiological conditions. Many IDPs perform regulatory roles in a range of cellular functions, which motivated us to design two proline-rich disordered peptides (P2 and P6) and augmented them into the SmartBone® (SBN) biohybrid substitute. Recently we reported an improved proliferation and osteogensis of human osteoblasts and mesenchymal stem cells in the composite groups containing peptides (named here as SBN + P2 and SBN + P6) in vitro. To address the effects of these composites on bone formation and biomineralization, this in vivo study investigated their functions in critical size craniotomy defects in 16 domestic pigs after 8 and 16 weeks of healing. For this purpose, we used cone beam computed tomography (CBCT), microCT (µCT), histology, immunohistochemistry, fluorescent labeling of abundant reactive entities (FLARE), synchrotron SAXS/XRD, optical photothermal IR (O-PTIR) microscopy and nanoscale atomic force microscopy-infrared (AFM-IR) analyses. Our results represent new synthetic IDPs as potential candidates for directing bone formation and biomineralization. The SBN + P6 stimulated significantly higher bone formation and biomineralization after 8 weeks of healing compared to other groups indicating its potential in stimulating early biomineralization. After 16 weeks of healing, the SBN + P2 induced significantly higher bone formation and biomineralization compared to other groups indicating its effects on later bone formation and biomineralization processes. The vigorous stretching of amide primary and secondary IR absorbance peaks at 1660 and 1546 cm−1 in the SBN + P2 group verified that this peptide experienced more conformational changes after 16 weeks of implantation with a higher phosphate intensity at 1037 cm−1 compared to peptide 6. Overall, P2 and P6 are promising candidates for bone augmentation strategies in critical clinical applications. We concluded that FLARE and O-PTIR are promising tools in evaluating and diagnosing the biochemical structure of bone tissue and the bone-biomaterial interface

    Intrinsically disordered peptides enhance regenerative capacities of bone composite xenografts

    No full text
    Biomaterial scientists design organic bone substitutes based on the biochemical properties of the mimicked tissue to achieve near native functionality. Several non-collagenous proteins in bone are known as intrinsically disordered proteins (IDPs), as they lack detectible ordered domains and a fixed 3D structure under physiological conditions. Many IDPs perform regulatory roles in a range of cellular functions, which motivated us to design two proline-rich disordered peptides (P2 and P6) and augmented them into the SmartBone® (SBN) biohybrid substitute. Recently we reported an improved proliferation and osteogensis of human osteoblasts and mesenchymal stem cells in the composite groups containing peptides (named here as SBN + P2 and SBN + P6) in vitro. To address the effects of these composites on bone formation and biomineralization, this in vivo study investigated their functions in critical size craniotomy defects in 16 domestic pigs after 8 and 16 weeks of healing. For this purpose, we used cone beam computed tomography (CBCT), microCT (µCT), histology, immunohistochemistry, fluorescent labeling of abundant reactive entities (FLARE), synchrotron SAXS/XRD, optical photothermal IR (O-PTIR) microscopy and nanoscale atomic force microscopy-infrared (AFM-IR) analyses. Our results represent new synthetic IDPs as potential candidates for directing bone formation and biomineralization. The SBN + P6 stimulated significantly higher bone formation and biomineralization after 8 weeks of healing compared to other groups indicating its potential in stimulating early biomineralization. After 16 weeks of healing, the SBN + P2 induced significantly higher bone formation and biomineralization compared to other groups indicating its effects on later bone formation and biomineralization processes. The vigorous stretching of amide primary and secondary IR absorbance peaks at 1660 and 1546 cm−1 in the SBN + P2 group verified that this peptide experienced more conformational changes after 16 weeks of implantation with a higher phosphate intensity at 1037 cm−1 compared to peptide 6. Overall, P2 and P6 are promising candidates for bone augmentation strategies in critical clinical applications. We concluded that FLARE and O-PTIR are promising tools in evaluating and diagnosing the biochemical structure of bone tissue and the bone-biomaterial interface
    corecore