103 research outputs found

    The molecular basis of protein toxin HicA-dependent binding of the protein antitoxin HicB to DNA

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Experimental SAXS data and derived models of both HicB4 and HicAB4 have been deposited in the Small Angle Scattering Biological Data Bank (SASBDB) under the accession codes SASDD45 and SASDD55.Toxin-antitoxin (TA) systems are present in many bacteria and play important roles in bacterial growth, physiology, and pathogenicity. Those that are best studied are the type II TA systems, in which both toxins and antitoxins are proteins. The HicAB system is one of the prototypic TA systems, found in many bacterial species. Complex interactions between the protein toxin (HicA), the protein antitoxin (HicB), and the DNA upstream of the encoding genes regulate the activity of this system, but few structural details are available about how HicA destabilizes the HicB-DNA complex. Here, we determined the X-ray structures of HicB and the HicAB complex to 1.8 and 2.5 Å resolution respectively and characterized their DNA interactions. This revealed that HicB forms a tetramer and HicA and HicB form a hetero-octameric complex that involves structural reorganization of the C-terminal (DNA-binding) region of HicB. Our observations indicated that HicA has a profound impact on binding of HicB to DNA sequences upstream of hicAB in a stoichiometric-dependent way. At low ratios of HicA:HicB, there was no effect on DNA binding, but at higher ratios, the affinity for DNA declined cooperatively, driving dissociation of the HicA:HicB:DNA complex.These results reveal the structural mechanisms by which HicA de-represses the HicB-DNA complex.Biotechnology and Biological Sciences Research Council (BBSRC

    The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase

    Get PDF
    Copyright: © 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Oxygen supplementation facilitating successful prosthetic fitting and rehabilitation of a patient with severe chronic obstructive pulmonary disease following trans-tibial amputation: a case report

    Get PDF
    Abstract Introduction Dysvascular amputations are increasingly performed in patients with underlying cardiac and pulmonary disorders. A limb prosthesis is rarely offered to patients with severe chronic obstructive pulmonary disease because of their inability to achieve the high energy expenditure required for prosthetic ambulation. We describe a case of successful prosthetic fitting and rehabilitation of a patient with severe chronic obstructive pulmonary disease with the aid of oxygen supplementation. Case presentation A 67-year-old aboriginal woman with severe chronic obstructive pulmonary disease and hypercapnic respiratory failure underwent right trans-tibial (below the knee) amputation for severe foot gangrene. An aggressive rehabilitation program of conditioning exercises and gait training utilizing oxygen therapy was initiated. She was custom-fitted with a right trans-tibial prosthesis. A rehabilitation program improved her strength, endurance and stump contracture, and she was able to walk for short distances with the prosthesis. The motion analysis studies showed a cadence of 73.5 steps per minute, a velocity of 0.29 meters per second and no difference in right and left step time and step length. Conclusion This case report illustrates that patients with significant severe chronic obstructive pulmonary disease can be successfully fitted with limb prostheses and undergo rehabilitation using supplemental oxygen along with optimization of their underlying comorbidities. Despite the paucity of published information in this area, prosthesis fitting and rehabilitation should be considered in patients who have undergone amputation and have severe chronic obstructive disease.</p

    DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2

    Get PDF
    The repair of DNA double-strand breaks (DSBs) by homologous recombination requires processing of broken ends. For repair to start, the DSB must first be resected to generate a 3′-single-stranded DNA (ssDNA) overhang, which becomes a substrate for the DNA strand exchange protein, Rad51 (ref. 1). Genetic studies have implicated a multitude of proteins in the process, including helicases, nucleases and topoisomerases. Here we biochemically reconstitute elements of the resection process and reveal that it requires the nuclease Dna2, the RecQ-family helicase Sgs1 and the ssDNA-binding protein replication protein-A (RPA). We establish that Dna2, Sgs1 and RPA constitute a minimal protein complex capable of DNA resection in vitro. Sgs1 helicase unwinds the DNA to produce an intermediate that is digested by Dna2, and RPA stimulates DNA unwinding by Sgs1 in a species-specific manner. Interestingly, RPA is also required both to direct Dna2 nucleolytic activity to the 5′-terminated strand of the DNA break and to inhibit 3′ to 5′ degradation by Dna2, actions that generate and protect the 3′-ssDNA overhang, respectively. In addition to this core machinery, we establish that both the topoisomerase 3 (Top3) and Rmi1 complex and the Mre11–Rad50–Xrs2 complex (MRX) have important roles as stimulatory components. Stimulation of end resection by the Top3–Rmi1 heterodimer and the MRX proteins is by complex formation with Sgs1 (refs 5, 6), which unexpectedly stimulates DNA unwinding. We suggest that Top3–Rmi1 and MRX are important for recruitment of the Sgs1–Dna2 complex to DSBs. Our experiments provide a mechanistic framework for understanding the initial steps of recombinational DNA repair in eukaryotes

    Characterization of Sulfolobus islandicus rod-shaped virus 2 gp19, a single-strand specific endonuclease

    Get PDF
    The hyperthermophilic Sulfolobus islandicus rod-shaped virus 2 (SIRV2) encodes a 25-kDa protein (SIRV2gp19) annotated as a hypothetical protein with sequence homology to the RecB nuclease superfamily. Even though SIRV2gp19 homologs are conserved throughout the rudivirus family and presumably play a role in the viral life cycle, SIRV2gp19 has not been functionally characterized. To define the minimal requirements for activity, SIRV2gp19 was purified and tested under varying conditions. SIRV2gp19 is a single-strand specific endonuclease that requires Mg2+ for activity and is inactive on double-stranded DNA. A conserved aspartic acid in RecB nuclease superfamily Motif II (D89) is also essential for SIRV2gp19 activity and mutation to alanine (D89A) abolishes activity. Therefore, the SIRV2gp19 cleavage mechanism is similar to previously described RecB nucleases. Finally, SIRV2gp19 single-stranded DNA endonuclease activity could play a role in host chromosome degradation during SIRV2 lytic infection

    Effects of dietary phytoestrogens on plasma testosterone and triiodothyronine (T3) levels in male goat kids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to xenoestrogens in humans and animals has gained increasing attention due to the effects of these compounds on reproduction. The present study was undertaken to investigate the influence of low-dose dietary phytoestrogen exposure, i.e. a mixture of genistein, daidzein, biochanin A and formononetin, on the establishment of testosterone production during puberty in male goat kids.</p> <p>Methods</p> <p>Goat kids at the age of 3 months received either a standard diet or a diet supplemented with phytoestrogens (3 - 4 mg/kg/day) for ~3 months. Plasma testosterone and total and free triiodothyronine (T<sub>3</sub>) concentrations were determined weekly. Testicular levels of testosterone and cAMP were measured at the end of the experiment. Repeated measurement analysis of variance using the MIXED procedure on the generated averages, according to the Statistical Analysis System program package (Release 6.12, 1996, SAS Institute Inc., Cary, NC, USA) was carried out.</p> <p>Results</p> <p>No significant difference in plasma testosterone concentration between the groups was detected during the first 7 weeks. However, at the age of 5 months (i.e. October 1, week 8) phytoestrogen-treated animals showed significantly higher testosterone concentrations than control animals (37.5 nmol/l vs 19.1 nmol/l). This elevation was preceded by a rise in plasma total T<sub>3 </sub>that occurred on September 17 (week 6). A slightly higher concentration of free T<sub>3 </sub>was detected in the phytoestrogen group at the same time point, but it was not until October 8 and 15 (week 9 and 10) that a significant difference was found between the groups. At the termination of the experiment, testicular cAMP levels were significantly lower in goats fed a phytoestrogen-supplemented diet. Phytoestrogen-fed animals also had lower plasma and testicular testosterone concentrations, but these differences were not statistically significant.</p> <p>Conclusion</p> <p>Our findings suggest that phytoestrogens can stimulate testosterone synthesis during puberty in male goats by increasing the secretion of T<sub>3</sub>; a hormone known to stimulate Leydig cell steroidogenesis. It is possible that feedback signalling underlies the tendency towards decreased steroid production at the end of the experiment.</p

    Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I

    Get PDF
    The Type I restriction-modification enzyme EcoR124I is an archetypical helicase-based dsDNA translocase that moves unidirectionally along the 3′–5′ strand of intact duplex DNA. Using a combination of ensemble and single-molecule measurements, we provide estimates of two physicochemical constants that are fundamental to a full description of motor protein activity—the ATP coupling efficiency (the number of ATP consumed per base pair) and the step size (the number of base pairs transported per motor step). Our data indicate that EcoR124I makes small steps along the DNA of 1 bp in length with 1 ATP consumed per step, but with some uncoupling of the ATPase and translocase cycles occurring so that the average number of ATP consumed per base pair slightly exceeds unity. Our observations form a framework for understanding energy coupling in a great many other motors that translocate along dsDNA rather than ssDNA

    Genome Sequence and Transcriptome Analysis of the Radioresistant Bacterium Deinococcus gobiensis: Insights into the Extreme Environmental Adaptations

    Get PDF
    The desert is an excellent model for studying evolution under extreme environments. We present here the complete genome and ultraviolet (UV) radiation-induced transcriptome of Deinococcus gobiensis I-0, which was isolated from the cold Gobi desert and shows higher tolerance to gamma radiation and UV light than all other known microorganisms. Nearly half of the genes in the genome encode proteins of unknown function, suggesting that the extreme resistance phenotype may be attributed to unknown genes and pathways. D. gobiensis also contains a surprisingly large number of horizontally acquired genes and predicted mobile elements of different classes, which is indicative of adaptation to extreme environments through genomic plasticity. High-resolution RNA-Seq transcriptome analyses indicated that 30 regulatory proteins, including several well-known regulators and uncharacterized protein kinases, and 13 noncoding RNAs were induced immediately after UV irradiation. Particularly interesting is the UV irradiation induction of the phrB and recB genes involved in photoreactivation and recombinational repair, respectively. These proteins likely include key players in the immediate global transcriptional response to UV irradiation. Our results help to explain the exceptional ability of D. gobiensis to withstand environmental extremes of the Gobi desert, and highlight the metabolic features of this organism that have biotechnological potential

    Systematic review of studies examining transtibial prosthetic socket pressures with changes in device alignment

    Get PDF
    Suitable lower-limb prosthetic sockets must provide an adequate distribution of the pressures created from standing and ambulation. A systematic search for articles reporting socket pressure changes in response to device alignment perturbation was carried out, identifying 11 studies. These were then evaluated using the American Academy of Orthotists and Prosthetists guidelines for a state-of-the-science review. Each study used a design where participants acted as their own controls. Results were available for 52 individuals and 5 forms of alignment perturbation. Four studies were rated as having moderate internal and external validity, the remainder were considered to have low validity. Significant limitations in study design, reporting quality and in representation of results and the suitability of calculations of statistical significance were evident across articles. Despite the high inhomogeneity of study designs, moderate evidence supports repeatable changes in pressure distribution for specific induced changes in component alignment. However, there also appears to be a significant individual component to alignment responses. Future studies should aim to include greater detail in the presentation of results to better support later meta-analyses
    corecore