745 research outputs found

    Highly charged ions in Penning traps, a new tool for resolving low lying isomeric states

    Full text link
    The use of highly charged ions increases the precision and resolving power, in particular for short-lived species produced at on-line radio-isotope beam facilities, achievable with Penning trap mass spectrometers. This increase in resolving power provides a new and unique access to resolving low-lying long-lived (T1/2>50T_{1/2} > 50 ms) nuclear isomers. Recently, the 111.19(22)111.19(22) keV (determined from γ\gamma-ray spectroscopy) isomeric state in 78^{78}Rb has been resolved from the ground state, in a charge state of q=8+q=8+ with the TITAN Penning trap at the TRIUMF-ISAC facility. The excitation energy of the isomer was measured to be 108.7(6.4)108.7(6.4) keV above the ground state. The extracted masses for both the ground and isomeric states, and their difference, agree with the AME2003 and Nuclear Data Sheet values. This proof of principle measurement demonstrates the feasibility of using Penning trap mass spectrometers coupled to charge breeders to study nuclear isomers and opens a new route for isomer searches.Comment: 8 pages, 6 figure

    Vaccinia virus temperature-sensitive mutants in the A28 gene produce non-infectious virions that bind to cells but are defective in entry

    Get PDF
    AbstractThe vaccinia virus temperature-sensitive mutations Cts6 and Cts9 were mapped by marker rescue and DNA sequencing to the A28 gene. Cts6 and Cts9 contain an identical 2-bp deletion truncating the A28 protein and removing the fourth conserved cysteine near the C-terminus. Cts9 mutant virions produced at 40 °C were non-infectious and unable to cause cytopathic effect. However, the mutant A28 protein localized to purified mature virions (MV) at 31 °C and 40 °C. MV of Cts9 produced at 40 °C bound to cells but did not enter cells. Low pH treatment of Cts9-infected cells at 18 h p.i. failed to produce fusion from within at 40 °C, but gave fusion at 31 °C. Adsorption of Cts9 mutant virions to cells followed by low pH treatment showed a defect in fusion from without. The Cts9 phenotype suggests that the A28 protein is involved in both virus entry and cell–cell fusion, and supports the linkage between the two processes

    Extinction of the N=20 neutron-shell closure for 32Mg examined by direct mass measurements

    Full text link
    The 'island of inversion' around 32^{32}Mg is one of the most important paradigm for studying the disappearance of the stabilizing 'magic' of a shell closure. We present the first Penning-trap mass measurements of the exotic nuclides 2931^{29-31}Na and 3034^{30-34}Mg, which allow a precise determination of the empirical shell gap for 32^{32}Mg. The new value of 1.10(3) MeV is the lowest observed shell gap for any nuclide with a canonical magic number.Comment: 6 pages, 4 figures, submitted to Physical Review

    First direct mass-measurement of the two-neutron halo nucleus 6He and improved mass for the four-neutron halo 8He

    Full text link
    The first direct mass-measurement of 6^{6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of 8^{8}He was determined with improved precision over our previous measurement. The obtained masses are mm(6^{6}He) = 6.018 885 883(57) u and mm(8^{8}He) = 8.033 934 44(11) u. The 6^{6}He value shows a deviation from the literature of 4σ\sigma. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) fm and 1.959(16) fm for 6^{6}He and 8^{8}He respectively. We present a detailed comparison to nuclear theory for 6^6He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.Comment: 4 pages, 2 figure

    Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    Full text link
    A new technique has been developed at TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of ββ\beta\beta decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of 124^{124}Cs.Comment: 9 pages, 9 figure

    Low-Background In-Trap Decay Spectroscopy with TITAN at TRIUMF

    Get PDF
    An in-trap decay spectroscopy setup has been developed and constructed for use with the TITAN facility at TRIUMF. The goal of this device is to observe weak electron-capture (EC) branching ratios for the odd-odd intermediate nuclei in the ββ\beta\beta decay process. This apparatus consists of an up-to 6 Tesla, open-access spectroscopy ion-trap, surrounded radially by up to 7 planar Si(Li) detectors which are separated from the trap by thin Be windows. This configuration provides a significant increase in sensitivity for the detection of low-energy photons by providing backing-free ion storage and eliminating charged-particle-induced backgrounds. An intense electron beam is also employed to increase the charge-states of the trapped ions, thus providing storage times on the order of minutes, allowing for decay-spectroscopy measurements. The technique of multiple ion-bunch stacking was also recently demonstrated, which further extends the measurement possibilities of this apparatus. The current status of the facility and initial results from a 116^{116}In measurement are presented.Comment: Proceedings for the 2nd International Conference on Advances in Radioactive Isotope Science (ARIS2014

    Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation

    Full text link
    If the mass excess of neutron-deficient nuclei and their neutron-rich mirror partners are both known, it can be shown that deviations of the Isobaric Mass Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a cubic term was probed by using the atomic mass of neutron-rich magnesium isotopes measured using the TITAN Penning trap and the recently measured proton-separation energies of 29^{29}Cl and 30^{30}Ar. The atomic mass of 27^{27}Mg was found to be within 1.6σ\sigma of the value stated in the Atomic Mass Evaluation. The atomic masses of 28,29^{28,29}Mg were measured to be both within 1σ\sigma, while being 8 and 34 times more precise, respectively. Using the 29^{29}Mg mass excess and previous measurements of 29^{29}Cl we uncovered a cubic coefficient of dd = 28(7) keV, which is the largest known cubic coefficient of the IMME. This departure, however, could also be caused by experimental data with unknown systematic errors. Hence there is a need to confirm the mass excess of 28^{28}S and the one-neutron separation energy of 29^{29}Cl, which have both come from a single measurement. Finally, our results were compared to ab initio calculations from the valence-space in-medium similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure

    A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

    Get PDF
    An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is to accumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed
    corecore