697 research outputs found
Extinction of the N=20 neutron-shell closure for 32Mg examined by direct mass measurements
The 'island of inversion' around Mg is one of the most important
paradigm for studying the disappearance of the stabilizing 'magic' of a shell
closure. We present the first Penning-trap mass measurements of the exotic
nuclides Na and Mg, which allow a precise determination of
the empirical shell gap for Mg. The new value of 1.10(3) MeV is the
lowest observed shell gap for any nuclide with a canonical magic number.Comment: 6 pages, 4 figures, submitted to Physical Review
First direct mass-measurement of the two-neutron halo nucleus 6He and improved mass for the four-neutron halo 8He
The first direct mass-measurement of He has been performed with the
TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the
mass of He was determined with improved precision over our previous
measurement. The obtained masses are (He) = 6.018 885 883(57) u and
(He) = 8.033 934 44(11) u. The He value shows a deviation from
the literature of 4. With these new mass values and the previously
measured atomic isotope shifts we obtain charge radii of 2.060(8) fm and
1.959(16) fm for He and He respectively. We present a detailed
comparison to nuclear theory for He, including new hyperspherical harmonics
results. A correlation plot of the point-proton radius with the two-neutron
separation energy demonstrates clearly the importance of three-nucleon forces.Comment: 4 pages, 2 figure
Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements
A new technique has been developed at TRIUMF's TITAN facility to perform
in-trap decay spectroscopy. The aim of this technique is to eventually measure
weak electron capture branching ratios (ECBRs) and by this to consequently
determine GT matrix elements of decaying nuclei. These branching
ratios provide important input to the theoretical description of these decays.
The feasibility and power of the technique is demonstrated by measuring the
ECBR of Cs.Comment: 9 pages, 9 figure
Low-Background In-Trap Decay Spectroscopy with TITAN at TRIUMF
An in-trap decay spectroscopy setup has been developed and constructed for
use with the TITAN facility at TRIUMF. The goal of this device is to observe
weak electron-capture (EC) branching ratios for the odd-odd intermediate nuclei
in the decay process. This apparatus consists of an up-to 6 Tesla,
open-access spectroscopy ion-trap, surrounded radially by up to 7 planar Si(Li)
detectors which are separated from the trap by thin Be windows. This
configuration provides a significant increase in sensitivity for the detection
of low-energy photons by providing backing-free ion storage and eliminating
charged-particle-induced backgrounds. An intense electron beam is also employed
to increase the charge-states of the trapped ions, thus providing storage times
on the order of minutes, allowing for decay-spectroscopy measurements. The
technique of multiple ion-bunch stacking was also recently demonstrated, which
further extends the measurement possibilities of this apparatus. The current
status of the facility and initial results from a In measurement are
presented.Comment: Proceedings for the 2nd International Conference on Advances in
Radioactive Isotope Science (ARIS2014
First Penning-trap mass measurement in the millisecond half-life range: the exotic halo nucleus 11Li
In this letter, we report a new mass for Li using the trapping
experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived
nuclide, , for which a mass measurement has ever been
performed with a Penning trap. Combined with our mass measurements of
Li we derive a new two-neutron separation energy of 369.15(65) keV: a
factor of seven more precise than the best previous value. This new value is a
critical ingredient for the determination of the halo charge radius from
isotope-shift measurements. We also report results from state-of-the-art
atomic-physics calculations using the new mass and extract a new charge radius
for Li. This result is a remarkable confluence of nuclear and atomic
physics.Comment: Formatted for submission to PR
Elucidation of the anomalous A = 9 isospin quartet behaviour
Recent high-precision mass measurements of Li and Be, performed
with the TITAN Penning trap at the TRIUMF ISAC facility, are analyzed in light
of state-of-the-art shell model calculations. We find an explanation for the
anomalous Isobaric Mass Multiplet Equation (IMME) behaviour for the two = 9
quartets. The presence of a cubic = 6.3(17) keV term for the =
3/2 quartet and the vanishing cubic term for the excited =
1/2 multiplet depend upon the presence of a nearby = 1/2 state in
B and Be that induces isospin mixing. This is contrary to previous
hypotheses involving purely Coulomb and charge-dependent effects. = 1/2
states have been observed near the calculated energy, above the = 3/2
state. However an experimental confirmation of their is needed.Comment: 5 pages, 2 figure
Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets
Using the Penning trap mass spectrometer TITAN, we performed the first direct
mass measurements of 20,21Mg, isotopes that are the most proton-rich members of
the A = 20 and A = 21 isospin multiplets. These measurements were possible
through the use of a unique ion-guide laser ion source, a development that
suppressed isobaric contamination by six orders of magnitude. Compared to the
latest atomic mass evaluation, we find that the mass of 21Mg is in good
agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements
reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times,
respectively, resulting in a significant departure from the expected behavior
of the isobaric multiplet mass equation in both the A = 20 and A = 21
multiplets. This presents a challenge to shell model calculations using either
the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving
interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure
- …