18 research outputs found
By the Old Rustic Bridge : Sweetheart Nell
https://digitalcommons.library.umaine.edu/mmb-vp/1192/thumbnail.jp
An Indirect Cue of Predation Risk Counteracts Female Preference for Conspecifics in a Naturally Hybridizing Fish Xiphophorus birchmanni
Mate choice is context dependent, but the importance of current context to interspecific mating and hybridization is largely unexplored. An important influence on mate choice is predation risk. We investigated how variation in an indirect cue of predation risk, distance to shelter, influences mate choice in the swordtail Xiphophorus birchmanni, a species which sometimes hybridizes with X. malinche in the wild. We conducted mate choice experiments to determine whether females attend to the distance to shelter and whether this cue of predation risk can counteract female preference for conspecifics. Females were sensitive to shelter distance independent of male presence. When conspecific and heterospecific X. malinche males were in equally risky habitats (i.e., equally distant from shelter), females associated primarily with conspecifics, suggesting an innate preference for conspecifics. However, when heterospecific males were in less risky habitat (i.e., closer to shelter) than conspecific males, females no longer exhibited a preference, suggesting that females calibrate their mate choices in response to predation risk. Our findings illustrate the potential for hybridization to arise, not necessarily through reproductive âmistakesâ, but as one of many potential outcomes of a context-dependent mate choice strategy
Integrated genomic characterization of oesophageal carcinoma
Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.ope
Integrated genomic characterization of oesophageal carcinoma
Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies
Improving mass redistribution estimates by modeling ocean bottom pressure uncertainties
Weekly ocean bottom pressure anomalies (OBP) are modeled using the Finite Element Sea-ice Ocean Model FESOM). The model's OBP error, mostly unknown so far, is assessed by comparing two model simulations, each forced by different atmospheric forcing data sets. The mean estimated error of modeled OBP is found to be 0.04 m per 1.5° à 1.5° grid cell. The error varies strongly from 0.003 m in the equatorial region to 0.31 m in the Weddell and Ross Seas. We believe that the spatial variations of the errors are an important improvement over previous error models. The new error estimates are implemented in a joint inversion of Gravity Recovery and Climate Experiment (GRACE) gravity measurements, GPS site displacements and modeled OBP, resulting in a larger overall OBP weight in the inversion, most notably in the Polar Regions. Additionally, the inversion provides a global mass correction term to adjust the ocean mass budget of the model. The estimated term is used to correct the model's fresh water balance, making it consistent with GRACE and GPS on seasonal and longer timescales. All model results, weekly GRACE estimates and the inverse solutions are compared with measurements from in situ bottom pressure recorders. The newly estimated error model of the combination solution results in higher correlations than the previously used constant error model of the combination solution