19 research outputs found

    Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers

    Get PDF
    This paper introduces a novel bacterial identification assay based on thermal wave analysis through surfaceimprinted polymers (SIPs). Aluminum chips are coated with SIPs, serving as synthetic cell receptors that have been combined previously with the heat-transfer method (HTM) for the selective detection of bacteria. In this work, the concept of bacterial identification is extended toward the detection of nine different bacterial species. In addition, a novel sensing approach, thermal wave transport analysis (TWTA), is introduced, which analyzes the propagation of a thermal wave through a functional interface. The results presented here demonstrate that bacterial rebinding to the SIP layer resulted in a measurable phase shift in the propagated wave, which is most pronounced at a frequency of 0.03 Hz. In this way, the sensor is able to selectively distinguish between the different bacterial species used in this study. Furthermore, a dose−response curve was constructed to determine a limit of detection of 1 × 104 CFU mL−1 , indicating that TWTA is advantageous over HTM in terms of sensitivity and response time. Additionally, the limit of selectivity of the sensor was tested in a mixed bacterial solution, containing the target species in the presence of a 99-fold excess of competitor species. Finally, a first application for the sensor in terms of infection diagnosis is presented, revealing that the platform is able to detect bacteria in clinically relevant concentrations as low as 3 × 104 CFU mL−1 in spiked urine samples

    A Novel Biomimetic Tool for Assessing Vitamin K Status Based on Molecularly Imprinted Polymers

    Get PDF
    Vitamin K was originally discovered as a cofactor required to activate clotting factors and has recently been shown to play a key role in the regulation of soft tissue calcification. This property of vitamin K has led to an increased interest in novel methods for accurate vitamin K detection. Molecularly Imprinted Polymers (MIPs) could offer a solution, as they have been used as synthetic receptors in a large variety of biomimetic sensors for the detection of similar molecules over the past few decades, because of their robust nature and remarkable selectivity. In this article, the authors introduce a novel imprinting approach to create a MIP that is able to selectively rebind vitamin K 1. As the native structure of the vitamin does not allow for imprinting, an alternative imprinting strategy was developed, using the synthetic compound menadione (vitamin K 3) as a template. Target rebinding was analyzed by means of UV-visible (UV-VIS) spectroscopy and two custom-made thermal readout techniques. This analysis reveals that the MIP-based sensor reacts to an increasing concentration of both menadione and vitamin K 1. The Limit of Detection (LoD) for both compounds was established at 700 nM for the Heat Transfer Method (HTM), while the optimized readout approach, Thermal Wave Transport Analysis (TWTA), displayed an increased sensitivity with a LoD of 200 nM. The sensor seems to react to a lesser extent to Vitamin E, the analogue under study. To further demonstrate its potential application in biochemical research, the sensor was used to measure the absorption of vitamin K in blood serum after taking vitamin K supplements. By employing a gradual enrichment strategy, the sensor was able to detect the difference between baseline and peak absorption samples and was able to quantify the vitamin K concentration in good agreement with a validation experiment using High-Performance Liquid Chromatography (HPLC). In this way, the authors provide a first proof of principle for a low-cost, straightforward, and label-free vitamin K sensor

    Identification and Quantification of Defect Structures in Poly(2,5-thienylene vinylene) Derivatives Prepared via the Dithiocarbamate Precursor Route by Means of NMR Spectroscopy on C-13-Labeled Polymers

    No full text
    International audienceDuring the past decades several synthetic routes toward the low band gap polymer poly(2,5-thienylene vinylene) (PTV) and derivatives have been studied. This study describes an extensive NMR characterization of 13C-labeled 3-octyl-PTV and its precursor polymer prepared via the dithiocarbamate route which is, since stable monomers are available, a promising route toward PTV derivatives. By introducing 13C-labeled vinylene carbons, we were able to characterize these polymers in a quantitative way, taking the end groups and structural polymerization defects, which disturb the conjugated system, into account. Several NMR techniques and the synthesis of model compounds were used to fully assign the proton and carbon chemical shifts. Moreover, the classically used thermal conversion of the precursor toward the conjugated polymer has been compared to a smoother, acid-induced elimination procedure

    Thermal determination of perfluoroalkyl substances in environmental samples employing a molecularly imprinted polyacrylamide as a receptor layer

    No full text
    Polyfluoroalkyl substances (PFAS) have gained increasing negative attention in re-cent years owing to their potential carcinogenicity, neurotoxicity, and ability to bio-accumulate in wildlife, making their rapid and low-cost detection highly desirable. Molecularly Imprinted Polymers (MIPs) were therefore implemented as robust, cost-effective, and highly selective affinity reagent in a thermal sensing platform (the "Heat Transfer Method"), enabling the development of a time-efficient sensor that is capable of analyzing both river water and soil samples. To this end, a MIP was synthesized for the detection of perfluorooctanoic acid (PFOA) with an optimized rebinding capacity of 123 Imol g-1 and an imprinting factor of 2.1 as determined by UV-Vis spectrophotom-etry. Integration of the MIP into the thermal readout platform revealed a calculated limit of detection (LoD) of 22 pM in controlled buffer solutions. The sensor is able to distinguish PFOA from other PFAS and detect the compound in a mixture of PFAS, providing a proof-of-concept towards the desired application, the specific detection of PFOA in complex samples. To further illustrate the performance of the sensor in this sense, it was exposed to spiked (0.1 nM-500 nM) river water and soil samples, with a calculated LoD of 91 pM and 154 pM respectively. These findings highlight that the developed sensor has the potential to operate at a relevant sensitivity for the analysis of both aqueous and solid environmental samples, facilitating a more straightforward method of screening for PFAS against more complex and time-consuming methodologies.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Identifying Potential Machine Learning Algorithms for the Simulation of Binding Affinities to Molecularly Imprinted Polymers

    No full text
    Molecularly imprinted polymers (MIPs) are synthetic receptors engineered towards the selective binding of a target molecule; however, the manner in which MIPs interact with other molecules is of great importance. Being able to rapidly analyze the binding of potential molecular interferences and determine the selectivity of a MIP can be a long tedious task, being time- and resource-intensive. Identifying computational models capable of reliably predicting and reporting the binding of molecular species is therefore of immense value in both a research and commercial setting. This research therefore sets focus on comparing the use of machine learning algorithms (multitask regressor, graph convolution, weave model, DAG model, and inception) to predict the binding of various molecular species to a MIP designed towards 2-methoxphenidine. To this end, each algorithm was “trained” with an experimental dataset, teaching the algorithms the structures and binding affinities of various molecular species at varying concentrations. A validation experiment was then conducted for each algorithm, comparing experimental values to predicted values and facilitating the assessment of each approach by a direct comparison of the metrics. The research culminates in the construction of binding isotherms for each species, directly comparing experimental vs. predicted values and identifying the approach that best emulates the real-world data

    Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures

    No full text
    We demonstrate a novel way of creating three-dimensional microfluidic channels capable of following complex topographies. To this end, substrates with open channels and different geometries were 3D-printed, and the open channels were consecutively closed with a thermoplastic using a low-resolution vacuum-forming approach. This process allows the sealing of channels that are located on the surface of complex multiplanar topographies, as the thermoplastic aligns with the surface-shape (the macrostructure) of the substrate, while the microchannels remain mostly free of thermoplastic as their small channel size resists thermoplastic inflow. This new process was analyzed for its capability to consistently close different substrate geometries, which showed reliable sealing of angles >90°. Furthermore, the thermoplastic intrusion into channels of different widths was quantified, showing a linear effect of channel width and percentage of thermoplastic intrusion; ranging from 43.76% for large channels with 2 mm width to only 5.33% for channels with 500 ”m channel width. The challenging sealing of substrate ‘valleys’, which are created when two large protrusions are adjacent to each other, was investigated and the correlation between protrusion distance and height is shown. Lastly, we present three application examples: a serpentine mixer with channels spun around a cuboid, increasing the usable surface area; a cuvette-inspired flow cell for a 2-MXP biosensor based on molecular imprinted polymers, fitting inside a standard UV/Vis-Spectrophotometer; and an adapter system that can be manufactured by one-sided injection molding and is self-sealed before usage. These examples demonstrate how this novel technology can be used to easily adapt microfluidic circuits for application in biosensor platforms

    Thermal Pyocyanin Sensor Based on Molecularly Imprinted Polymers for the Indirect Detection of Pseudomonas aeruginosa

    No full text
    Pseudomonas aeruginosa is a ubiquitous multi-drug-resistant bacterium, capable of causing serious illnesses and infections. This research focuses on the development of a thermal sensor for the indirect detection of P. aeruginosa infection using molecularly imprinted polymers (MIPs). This was achieved by developing MIPs for the detection of pyocyanin, the main toxin secreted by P. aeruginosa. To this end, phenazine was used as a dummy template, evaluating several polymeric compositions to achieve a selective MIP for pyocyanin recognition. The sensitivity of the synthesized MIPs was investigated by UV-vis analysis, with the best composition having a maximum rebinding capacity of 30 mu mol g-1 and an imprinting factor (IF) of 1.59. Subsequently, the MIP particles were immobilized onto planar aluminum chips using an adhesive layer, to perform thermal resistance measurements at clinically relevant concentrations of pyocyanin (1.4-9.8 mu M), achieving a limit of detection (LoD) of 0.347 +/- 0.027 mu M. The selectivity of the sensor was also scrutinized by subjecting the receptor to potential interferents. Furthermore, the rebinding was demonstrated in King's A medium, highlighting the potential of the sensor for the indirect detection of P. aeruginosa in complex fluids. The research culminates in the demonstration of the MIP-based sensor's applicability for clinical diagnosis. To achieve this goal, an experiment was performed in which the sensor was exposed to pyocyanin-spiked saliva samples, achieving a limit of detection of 0.569 +/- 0.063 mu M and demonstrating that this technology is suitable to detect the presence of the toxin even at the very first stage of its production
    corecore