293 research outputs found

    TGF-β Signaling in Breast Cancer Cell Invasion and Bone Metastasis

    Get PDF
    The contribution of transforming growth factor β (TGF-β) signaling to breast cancer has been studied for more than two decades. In an early phase TGF-β may act as a tumour suppressor, while later, when cells have become resistant to its anti-mitogenic effects, the role of TGF-β switches towards malignant conversion and progression. TGF-β stimulates cell invasion and modifies the microenvironment to the advantage of cancer cells. Studies have shown that TGF-β promotes bone and lung metastasis via different mechanisms. The therapeutic strategies to target the TGF-β pathway in breast cancer are becoming increasingly clear. This review will focus on the role TGF-β in breast cancer invasion and metastasis

    TGFβ Signaling and Cardiovascular Diseases

    Get PDF
    Transforming growth factor β (TGFβ) family members are involved in a wide range of diverse functions and play key roles in embryogenesis, development and tissue homeostasis. Perturbation of TGFβ signaling may lead to vascular and other diseases. In vitro studies have provided evidence that TGFβ family members have a wide range of diverse effects on vascular cells, which are highly dependent on cellular context. Consistent with these observations genetic studies in mice and humans showed that TGFβ family members have ambiguous effects on the function of the cardiovascular system. In this review we discuss the recent advances on TGFβ signaling in (cardio)vascular diseases, and describe the value of TGFβ signaling as both a disease marker and therapeutic target for (cardio)vascular diseases

    Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts

    Get PDF
    ABSTRACT: Dupuytren's disease is a fibroproliferative disorder of the palmar fascia. The treatment used to date has mostly been surgery, but there is a high recurrence rate. Transforming growth factor β (TGF-β) has been implicated as a key stimulator of myofibroblast activity and fascial contraction in Dupuytren's disease. We studied Dupuytren's fibroblasts in tissues ex vivo and in cells cultured in vitro and found increased TGF-β expression compared to control fibroblasts. This correlated not only with elevated expression and activation of downstream Smad effectors but also with overactive extracellular signal-regulated kinase 1/2 (ERK1/2)/mitogen-activated protein (MAP) kinase signalling. Treatment with the TGF-β type I receptor kinase inhibitor SB-431542 and bone morphogenetic protein 6 (BMP6) led to inhibition of elevated Smad and ERK1/2/MAP kinase signalling as well as to inhibition of the increased contractility of Dupuytren's fibroblasts. BMP6 attenuated TGF-β expression in Dupuytren's fibroblasts, but not in control fibroblasts. Platelet-derived growth factor (PDGF) expression was strongly promoted by TGF-β in Dupuytren's fibroblasts and was curbed by SB-431542 or BMP6 treatment. High basal expression of phosphorylated ERK1/2 MAP kinase and fibroproliferative markers was attenuated in Dupuytren's fibroblasts by a selective PDGF receptor kinase inhibitor. Cotreatment of Dupuytren's fibroblasts with SB-431542 and the mitogen-activated protein kinase kinase 1 inhibitor PD98059 was sufficient to abrogate proliferation and contraction of Dupuytren's fibroblasts. Both TGF-β and ERK1/2 MAP kinase pathways cooperated in mediating the enhanced proliferation and high spontaneous contraction of Dupuytren's fibroblasts. Our data indicate that both signalling pathways are prime targets for the development of nonsurgical intervention strategies to treat Dupuytren's diseas

    Towards targeting overactive BMP signaling in Fibrodysplasia Ossificans Progressiva

    Get PDF
    Fibrodysplasia Ossificans Progressiva (FOP) is a rare monogenetic disorder in which patients develop heterotopic ossification (HO). A heterozygous mutation in BMP type I receptor ALK2 results in hyper-sensitized BMP signaling. The aim of this study is to identify small molecules which can selectively inhibit this overactive BMP pathway. Thirteen FDA-approved small molecules were tested on their effect on BMP6-induced target gene expression, alkaline phosphatase activity and mineralization in KS483 cells. We identified cryptotanshinone as a small molecule able to inhibit BMP signaling. In conclusion, cryptotanshinone could be a novel small molecule inhibitor of the overactive BMP signaling pathway in FOP

    Promiscuous signaling of ligands via mutant ALK2 in fibrodysplasia ossificans progressiva

    Get PDF
    Fibrodysplasia ossificans progressiva (FOP) is a rare hereditary disorder characterized by successive heterotopic bone formation, for which at present there is no therapy. Mutations in the bone morphogenetic protein (BMP) type I receptor Activin receptor-like kinase 2 (ACVR1/ALK2) are the main trigger for FOP and inflammation is thought to be the secondary hit. The single nucleotide mutation at position 617 in the cDNA ALK2 sequence, which is found in 98% of FOP patients, results in a R206H change in the intracellular juxtamembrane region of ALK2. Previous studies had revealed that this mutation perturbs the interaction with the negative regulator FKBP12, thereby sensitising cells expressing this mutant receptor to BMPs, which are potent inducers of cartilage and bone formation. Recently, however, a twist in the underlying mechanism of FOP was revealed. Mutant ALK2 was found to respond to Activin-A, whereas wild type ALK2 function is inhibited by Activin-A. The latter cytokine is induced locally upon tissue damage and inflammation. Moreover, therapeutic targeting of Activin-A was found to inhibit heterotopic ossification in a mutant ALK2 knock-in mouse model that is highly reminiscent to human FOP. This review will focus on these latest surprising findings and discuss the implication for treatment of FOP patients

    Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function

    Get PDF
    Angiogenesis is a hallmark of cancer and is now a validated therapeutic target in the clinical setting. Despite the initial success, anti-angiogenic compounds impinging on the vascular endothelial growth factor (VEGF) pathway display limited survival benefits in patients and resistance often develops due to activation of alternative pathways. Thus, finding and validating new targets is highly warranted. Activin receptor-like kinase (ALK)1 is a transforming growth factor beta (TGF-β) type I receptor predominantly expressed in actively proliferating endothelial cells (ECs). ALK1 has been shown to play a pivotal role in regulating angiogenesis by binding to bone morphogenetic protein (BMP)9 and 10. Two main pharmacological inhibitors, an ALK1-Fc fusion protein (Dalantercept/ACE-041) and a fully human antibody against the extracellular domain of ALK1 (PF-03446962) are currently under clinical development. Herein, we briefly recapitulate the role of ALK1 in blood vessel formation and the current status of the preclinical and clinical studies on inhibition of ALK1 signalling as an anti-angiogenic strategy. Future directions in terms of new combination regimens will also be presented

    Smad7 and protein phosphatase 1α are critical determinants in the duration of TGF-β/ALK1 signaling in endothelial cells

    Get PDF
    BACKGROUND: In endothelial cells (EC), transforming growth factor-β (TGF-β) can bind to and transduce signals through ALK1 and ALK5. The TGF-β/ALK5 and TGF-β/ALK1 pathways have opposite effects on EC behaviour. Besides differential receptor binding, the duration of TGF-β signaling is an important specificity determinant for signaling responses. TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs occurs transiently. RESULTS: The temporal activation of TGF-β-induced Smad1/5 phosphorylation in ECs was found to be affected by de novo protein synthesis, and ALK1 and Smad5 expression levels determined signal strength of TGF-β/ALK1 signaling pathway. Smad7 and protein phosphatase 1α (PP1α) mRNA expression levels were found to be specifically upregulated by TGF-β/ALK1. Ectopic expression of Smad7 or PP1α potently inhibited TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs. Conversely, siRNA-mediated knockdown of Smad7 or PP1α enhanced TGF-β/ALK1-induced signaling responses. PP1α interacted with ALK1 and this association was further potentiated by Smad7. Dephosphorylation of the ALK1, immunoprecipitated from cell lysates, was attenuated by a specific PP1 inhibitor. CONCLUSION: Our results suggest that upon its induction by the TGF-β/ALK1 pathway, Smad7 may recruit PP1α to ALK1, and thereby control TGF-β/ALK1-induced Smad1/5 phosphorylation

    Challenges and Opportunities for Drug Repositioning inFibrodysplasia Ossificans Progressiva

    Get PDF
    Fibrodysplasia ossificans progressiva (FOP) is an ultrarare congenital disease that progresses through intermittent episodes of bone formation at ectopic sites. FOP patients carry heterozygous gene point mutations in activin A receptor type I ACVR1, encoding the bone morphogenetic protein (BMP) type I serine/threonine kinase receptor ALK2, termed activin receptor-like kinase (ALK)2. The mutant ALK2 displays neofunctional responses to activin, a closely related BMP cytokine that normally inhibits regular bone formation. Moreover, the mutant ALK2 becomes hypersensitive to BMPs. Both these activities contribute to enhanced ALK2 signalling and endochondral bone formation in connective tissue. Being a receptor with an extracellular ligand-binding domain and intrinsic intracellular kinase activity, the mutant ALK2 is a druggable target. Although there is no approved cure for FOP yet, a number of clinical trials have been recently initiated, aiming to identify a safe and effective treatment for FOP. Among other targeted approaches, several repurposed drugs have shown promising results. In this review, we describe the molecular mechanisms underlying ALK2 mutation-induced aberrant signalling and ectopic bone formation. In addition, we recapitulate existing in vitro models to screen for novel compounds with a potential application in FOP. We summarize existing therapeutic alternatives and focus on repositioned drugs in FOP, at preclinical and clinical stage

    Ter94/VCP Is a Novel Component Involved in BMP Signaling

    Get PDF
    Bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor (TGF)-β family, transduce their signal through multiple components downstream of their receptors. Even though the components involved in the BMP signaling pathway have been intensely studied, many molecules mediating BMP signaling remain to be addressed. To identify novel components that participate in BMP signaling, RNA interference (RNAi)-based screening was established by detecting phosphorylated Mad (pMad) in Drosophila S2 cells. Ter94, a member of the family of AAA ATPases, was identified as a novel mediator of BMP signaling, which is required for the phosphorylation of Mad in Drosophila S2 cells. Moreover, the mammalian orthlog of Ter94 valosin-containing protein (VCP) plays a critical role in the BMP-Smad1/5/8 signaling pathway in mammalian cells. Genetic evidence suggests that Ter94 is involved in the dorsal-ventral patterning of the Drosophila early embryo through regulating decapentaplegic (Dpp)/BMP signals. Taken together, our data suggest that Ter94/VCP appears to be an evolutionarily conserved component that regulates BMP-Smad1/5/8 signaling.Peer reviewe
    corecore