66 research outputs found

    Fish pain: Would it change current best practice in the real world?

    Get PDF
    Much of the “fish pain debate” relates to how high the bar for pain should be set. The close phylogenetic affinities of teleosts with cartilaginous fishes which appear to lack nociceptors suggests caution should be applied by those who seek to lower the bar, especially given the equivocal and conflicting nature of the experimental data currently available for teleosts. Nevertheless, even if we assume fish “feel pain,” it is difficult to see how current best practice in aquaculture would change. This is because of the need to avoid stress at all stages of the rearing process to optimize health, growth performance and post-slaughter product quality. For recreational angling, while the capture process may be stressful, there are data that suggest it is not painful, and the stress can be minimised using current best practice guidelines for recreational fisheries. In commercial fisheries, however, changes to current best practices may be required for some activities if fish pain were resolved in the affirmative

    Charting two centuries of transformation in a coastal social-ecological system: a mixed methods approach

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordOyster reef ecosystems used to form significant components of many temperate and subtropical inshore coastal systems but have suffered declines globally, with a concurrent loss of services. The early timing of many of these changes makes it difficult to determine restoration targets which consider interdecadal timeframes, community values and shifted baselines. On the Australian continent, however, the transition from Indigenous (Aboriginal) to Westernized resource use and management occurred relatively recently, allowing us to map social-ecological changes in detail. In this study, we reconstruct the transformations in the Sydney rock oyster (Saccostrea glomerata) wild commercial industry of southeast Queensland, and by extension its reef ecosystems, as well as the changing societal and cultural values related to the presence and use of the rock oyster through time. By integrating data from the archaeological, anthropological and fisheries literature, government and media accounts, we explore these transformations over the last two centuries. Before the 1870s, there was a relative equilibrium. Aboriginal peoples featured as sole traders to Europeans, supplying oysters and becoming a substantial component of the industry’s labour pool. Effectively, Australia’s commercial oyster industry arose from Aboriginal-European trade. During this initial phase, there was still a relative abundance of wild oyster, with subtidal oyster reef structures present in regions where oysters are today absent or scarce. By contrast, these reefs declined by the late 19th 23 century, despite production of oysters increasing due to continued large-scale oyster recruitment and the expansion of oyster cultivation in intertidal areas. Production peaked in 1891, with successive peaks observed in regions further north. During the 1890s, flood events coupled with land-use changes introduced large quantities of silt into the system, which likely facilitated an increase in oyster pests and diseases, ultimately decreasing the carrying capacity of the system. Today oyster production in this region is less than one-tenth of historical peak production. Many cultural heritage components have also been lost. Indigenous management is now very minor due to the massive decimation of Aboriginal populations and their respective practices. Yet, we found strong cultural attachment to midden remains and oyster production continues within Indigenous communities, with considerable broader community support. This study highlights the value of conducting thorough analysis of early media accounts as a means for reconstructing historical resource decline and management. It further demonstrates the application of historical information and context for contemporary management, protection and restoration of much-altered coastal social-ecological systems

    Reasons to Be Skeptical about Sentience and Pain in Fishes and Aquatic Invertebrates

    Get PDF
    The welfare of fishes and aquatic invertebrates is important, and several jurisdictions have included these taxa under welfare regulation in recent years. Regulation of welfare requires use of scientifically validated welfare criteria. This is why applying Mertonian skepticism toward claims for sentience and pain in fishes and aquatic invertebrates is scientifically sound and prudent, particularly when those claims are used to justify legislation regulating the welfare of these taxa. Enacting welfare legislation for these taxa without strong scientific evidence is a societal and political choice that risks creating scientific and interpretational problems as well as major policy challenges, including the potential to generate significant unintended consequences. In contrast, a more rigorous science-based approach to the welfare of aquatic organisms that is based on verified, validated and measurable endpoints is more likely to result in “win-win” scenarios that minimize the risk of unintended negative impacts for all stakeholders, including fish and aquatic invertebrates. The authors identify as supporters of animal welfare, and emphasize that this issue is not about choosing between welfare and no welfare for fish and aquatic invertebrates, but rather to ensure that important decisions about their welfare are based on scientifically robust evidence. These ten reasons are delivered in the spirit of organized skepticism to orient legislators, decision makers and the scientific community, and alert them to the need to maintain a high scientific evidential bar for any operational welfare indicators used for aquatic animals, particularly those mandated by legislation. Moving forward, maintaining the highest scientific standards is vitally important, in order to protect not only aquatic animal welfare, but also global food security and the welfare of humans

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    Transcriptome characterization of the South African abalone Haliotis midae using sequencing-by-synthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worldwide, the genus <it>Haliotis </it>is represented by 56 extant species and several of these are commercially cultured. Among the six abalone species found in South Africa, <it>Haliotis midae </it>is the only aquacultured species. Despite its economic importance, genomic sequence resources for <it>H. midae</it>, and for abalone in general, are still scarce. Next generation sequencing technologies provide a fast and efficient tool to generate large sequence collections that can be used to characterize the transcriptome and identify expressed genes associated with economically important traits like growth and disease resistance.</p> <p>Results</p> <p>More than 25 million short reads generated by the Illumina Genome Analyzer were <it>de novo </it>assembled in 22,761 contigs with an average size of 260 bp. With a stringent <it>E</it>-value threshold of 10<sup>-10</sup>, 3,841 contigs (16.8%) had a BLAST homologous match against the Genbank non-redundant (NR) protein database. Most of these sequences were annotated using the gene ontology (GO) and eukaryotic orthologous groups of proteins (KOG) databases and assigned to various functional categories. According to annotation results, many gene families involved in immune response were identified. Thousands of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) were detected. Setting stringent parameters to ensure a high probability of amplification, 420 primer pairs in 181 contigs containing SSR loci were designed.</p> <p>Conclusion</p> <p>This data represents the most comprehensive genomic resource for the South African abalone <it>H. midae </it>to date. The amount of assembled sequences demonstrated the utility of the Illumina sequencing technology in the transcriptome characterization of a non-model species. It allowed the development of several markers and the identification of promising candidate genes for future studies on population and functional genomics in <it>H. midae </it>and in other abalone species.</p

    Hooking mortality of two species of shallow-water reef fish caught by recreational angling methods

    No full text
    The hooking mortality of two teleosts, the yellow stripey Lutjanus carponotatus (Lutjanidae), and the wire netting cod Epinephelus quoyanus (Serranidae), was examined for fish captured with lures and bait from shallow waters

    Emergence of serranid pigment abnormality syndrome (SPAS) in wire netting cod (Epinephelus quoyanus) from Heron Island on the southern Great Barrier Reef

    Get PDF
    Coral reefs worldwide are under increasing stress from anthropogenic impacts, but there are relatively few reports of increased rates of disease in coral reef fish. Herein we report the emergence of abnormal skin lesions in wild-caught wire netting cod (Epinephelus quoyanus) near Heron Island in the southern Great Barrier Reef. The lesion involves conspicuous darkening and disorganisation of the brown ‘wire netting’ colouration pattern typical of this species, most commonly on the lower jaw, premaxilla and head, with occasional involvement of the flanks and dorsal fin in some fish. The lesion was not present during research conducted in the mid-1990s; however, since it was first recorded in 2012, the prevalence of grossly visible lesions has increased to 16.9% in 2017, with fish >340 mm long most affected (prevalence 64.7%). These data suggest emergence of the lesion is a recent phenomenon and that causative factors may be age related. Abnormal pigmentation lesions have only been observed to affect E. quoyanus and coral trout (Plectropomus leopardus; since 2010). Given the species affected and the currently unknown aetiology of these lesions, we name the condition serranid pigment abnormality syndrome (SPAS). Further research is required to determine its geographic distribution, establish causation and describe the course of disease in E. quoyanus
    corecore