16 research outputs found

    Genetic characterization of the complete genome of a highly divergent simian T-lymphotropic virus (STLV) type 3 from a wild Cercopithecus mona monkey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent discoveries of novel human T-lymphotropic virus type 3 (HTLV-3) and highly divergent simian T-lymphotropic virus type 3 (STLV-3) subtype D viruses from two different monkey species in southern Cameroon suggest that the diversity and cross-species transmission of these retroviruses are much greater than currently appreciated.</p> <p>Results</p> <p>We describe here the first full-length sequence of a highly divergent STLV-3d(Cmo8699AB) virus obtained by PCR-based genome walking using DNA from two dried blood spots (DBS) collected from a wild-caught <it>Cercopithecus mona </it>monkey. The genome of STLV-3d(Cmo8699AB) is 8913-bp long and shares only 77% identity to other PTLV-3s. Phylogenetic analyses using Bayesian and maximum likelihood inference clearly show that this highly divergent virus forms an independent lineage with high posterior probability and bootstrap support within the diversity of PTLV-3. Molecular dating of concatenated <it>gag-pol-env-tax </it>sequences inferred a divergence date of about 115,117 years ago for STLV-3d(Cmo8699AB) indicating an ancient origin for this newly identified lineage. Major structural, enzymatic, and regulatory gene regions of STLV-3d(Cmo8699AB) are intact and suggest viral replication and a predicted pathogenic potential comparable to other PTLV-3s.</p> <p>Conclusion</p> <p>When taken together, the inferred ancient origin of STLV-3d(Cmo8699AB), the presence of this highly divergent virus in two primate species from the same geographical region, and the ease with which STLVs can be transmitted across species boundaries all suggest that STLV-3d may be more prevalent and widespread. Given the high human exposure to nonhuman primates in this region and the unknown pathogenicity of this divergent PTLV-3, increased surveillance and expanded prevention activities are necessary. Our ability to obtain the complete viral genome from DBS also highlights further the utility of this method for molecular-based epidemiologic studies.</p

    Widespread infection with homologues of human parvoviruses B19, PARV4, and human bocavirus of chimpanzees and gorillas in the wild

    Get PDF
    Infections with human parvoviruses B19 and recently discovered human bocaviruses (HBoVs) are widespread, while PARV4 infections are transmitted parenterally and prevalent specifically in injecting drug users and hemophiliacs. To investigate the exposure and circulation of parvoviruses related to B19 virus, PARV4, and HBoV in nonhuman primates, plasma samples collected from 73 Cameroonian wild-caught chimpanzees and gorillas and 91 Old World monkey (OWM) species were screened for antibodies to recombinant B19 virus, PARV4, and HBoV VP2 antigens by enzyme-linked immunosorbent assay (ELISA). Moderate to high frequencies of seroreactivity to PARV4 (63% and 18% in chimpanzees and gorillas, respectively), HBoV (73% and 36%), and B19 virus (8% and 27%) were recorded for apes, while OWMs were uniformly negative (for PARV4 and B19 virus) or infrequently reactive (3% for HBoV). For genetic characterization, plasma samples and 54 fecal samples from chimpanzees and gorillas collected from Cameroonian forest floors were screened by PCR with primers conserved within Erythrovirus, Bocavirus, and PARV4 genera. Two plasma samples (chimpanzee and baboon) were positive for PARV4, while four fecal samples were positive for HBoV-like viruses. The chimpanzee PARV4 variant showed 18% and 15% nucleotide sequence divergence in NS and VP1/2, respectively, from human variants (9% and 7% amino acid, respectively), while the baboon variant was substantially more divergent, mirroring host phylogeny. Ape HBoV variants showed complex sequence relationships with human viruses, comprising separate divergent homologues of HBoV1 and the recombinant HBoV3 species in chimpanzees and a novel recombinant species in gorillas. This study provides the first evidence for widespread circulation of parvoviruses in primates and enables future investigations of their epidemiology, host specificity, and (co)evolutionary histories

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Snakebite in bedroom kills a physician in Cameroon: a case report

    No full text
    The World Health Organization (WHO) classifies snake bites as neglected public health problem affecting mostly tropical and subtropical countries. In Africa there are an estimated 1 million snake bites annually with about half needing a specific treatment. Women, children and farmers in poor rural communities in developing countries are the most affected. Case management of snake bites are not adequate in many health facilities in developing countries where personnel are not always abreast with the new developments in snake bite management and in addition, quite often the anti-venom serum is lacking. We report the case of a medical doctor bitten by a cobra in the rural area of Poli, Cameroon while asleep in his bedroom. Lack of facilities coupled with poor case management resulted ina fatal outcome.The Pan African Medical Journal 2016;2

    Data from: DNA of diverse adenoviruses detected in Cameroonian rodent and shrew species

    No full text
    Rodent adenoviruses are important models for human disease. In contrast to the over 70 adenovirus types isolated from humans, few rodent adenoviruses are known, despite the vast diversity of rodent species. PCR and Sanger sequencing were used to investigate adenovirus diversity in wild rodents and shrews in Cameroon. Adenovirus DNA was detected in 13.8% of animals (n=218). All detected sequences differ from known adenovirus types by more than 10% on the amino acid level, thus indicating up to 14 novel adenovirus species. These results highlight the diversity of rodent adenoviruses, their phylogeny, and opportunities for studying alternative adenovirus rodent models

    The origin of malignant malaria

    No full text
    Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5–7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Cîte d'Ivoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2–3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity
    corecore