343 research outputs found

    Learning Multi-label Alternating Decision Trees from Texts and Data

    Get PDF
    International audienceMulti-label decision procedures are the target of the supervised learning algorithm we propose in this paper. Multi-label decision procedures map examples to a finite set of labels. Our learning algorithm extends Schapire and Singer?s Adaboost.MH and produces sets of rules that can be viewed as trees like Alternating Decision Trees (invented by Freund and Mason). Experiments show that we take advantage of both performance and readability using boosting techniques as well as tree representations of large set of rules. Moreover, a key feature of our algorithm is the ability to handle heterogenous input data: discrete and continuous values and text data. Keywords boosting - alternating decision trees - text mining - multi-label problem

    Learning Trading Rules with Inductive Logic Programming

    Full text link

    A Comparison of Random Forest with ECOC-Based Classifiers

    Get PDF
    We compare experimentally the performance of three approaches to ensemble-based classification on general multi-class datasets. These are the methods of random forest, error-correcting output codes (ECOC) and ECOC enhanced by the use of bootstrapping and class-separability weighting (ECOC-BW). These experiments suggest that ECOC-BW yields better generalisation performance than either random forest or unmodified ECOC. A bias-variance analysis indicates that ECOC benefits from reduced bias, when compared to random forest, and that ECOC-BW benefits additionally from reduced variance. One disadvantage of ECOC-based algorithms, however, when compared with random forest, is that they impose a greater computational demand leading to longer training times

    A Non-Sequential Representation of Sequential Data for Churn Prediction

    Get PDF
    We investigate the length of event sequence giving best predictions when using a continuous HMM approach to churn prediction from sequential data. Motivated by observations that predictions based on only the few most recent events seem to be the most accurate, a non-sequential dataset is constructed from customer event histories by averaging features of the last few events. A simple K-nearest neighbor algorithm on this dataset is found to give significantly improved performance. It is quite intuitive to think that most people will react only to events in the fairly recent past. Events related to telecommunications occurring months or years ago are unlikely to have a large impact on a customer’s future behaviour, and these results bear this out. Methods that deal with sequential data also tend to be much more complex than those dealing with simple nontemporal data, giving an added benefit to expressing the recent information in a non-sequential manner

    Adaptive Anomaly Detection via Self-Calibration and Dynamic Updating

    Get PDF
    The deployment and use of Anomaly Detection (AD) sensors often requires the intervention of a human expert to manually calibrate and optimize their performance. Depending on the site and the type of traffic it receives, the operators might have to provide recent and sanitized training data sets, the characteristics of expected traffic (i.e. outlier ratio), and exceptions or even expected future modifications of system's behavior. In this paper, we study the potential performance issues that stem from fully automating the AD sensors' day-to-day maintenance and calibration. Our goal is to remove the dependence on human operator using an unlabeled, and thus potentially dirty, sample of incoming traffic. To that end, we propose to enhance the training phase of AD sensors with a self-calibration phase, leading to the automatic determination of the optimal AD parameters. We show how this novel calibration phase can be employed in conjunction with previously proposed methods for training data sanitization resulting in a fully automated AD maintenance cycle. Our approach is completely agnostic to the underlying AD sensor algorithm. Furthermore, the self-calibration can be applied in an online fashion to ensure that the resulting AD models reflect changes in the system's behavior which would otherwise render the sensor's internal state inconsistent. We verify the validity of our approach through a series of experiments where we compare the manually obtained optimal parameters with the ones computed from the self-calibration phase. Modeling traffic from two different sources, the fully automated calibration shows a 7.08% reduction in detection rate and a 0.06% increase in false positives, in the worst case, when compared to the optimal selection of parameters. Finally, our adaptive models outperform the statically generated ones retaining the gains in performance from the sanitization process over time

    A New Pairwise Ensemble Approach for Text Classification

    Full text link

    A Multiclassifier Approach for Drill Wear Prediction

    Get PDF
    Classification methods have been widely used during last years in order to predict patterns and trends of interest in data. In present paper, a multiclassifier approach that combines the output of some of the most popular data mining algorithms is shown. The approach is based on voting criteria, by estimating the confidence distributions of each algorithm individually and combining them according to three different methods: confidence voting, weighted voting and majority voting. To illustrate its applicability in a real problem, the drill wear detection in machine-tool sector is addressed. In this study, the accuracy obtained by each isolated classifier is compared with the performance of the multiclassifier when characterizing the patterns of interest involved in the drilling process and predicting the drill wear. Experimental results show that, in general, false positives obtained by the classifiers can be slightly reduced by using the multiclassifier approach
    • …
    corecore