102 research outputs found

    Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering search algorithm

    Get PDF
    Predicting shallow landslide size and location across landscapes is important for understanding landscape form and evolution and for hazard identification. We test a recently‐developed model that couples a search algorithm with 3D slope‐stability analysis that predicts these two key attributes in an intensively studied landscape with a ten‐year landslide inventory. We use process‐based sub‐models to estimate soil depth, root strength, and pore pressure for a sequence of landslide‐triggering rainstorms. We parameterize sub‐models with field measurements independently of the slope stability model, without calibrating predictions to observations. The model generally reproduces observed landslide size and location distributions, overlaps 65% of observed landslides, and of these predicts size to within factors of 2 and 1.5 in 55% and 28% of cases, respectively. Five percent of the landscape is predicted unstable, compared to 2% recorded landslide area. Missed landslides are not due to the search algorithm but to the formulation and parameterization of the model and inaccuracy of observed landslide maps. Our model does not improve location prediction relative to infinite‐slope methods but predicts landslide size, improves process representation, and reduces reliance on effective parameters. Increasing rainfall intensity or root cohesion generally increases landslide size and shifts locations down hollow axes while increasing cohesion restricts unstable locations to areas with deepest soils. Our findings suggest that shallow landslide abundance, location, and size are ultimately controlled by co‐varying topographic, material, and hydrologic properties. Estimating the spatio‐temporal patterns of root strength, pore pressure, and soil depth, across a landscape may be the greatest remaining challenge

    Phoretic Motion of Spheroidal Particles Due To Self-Generated Solute Gradients

    Full text link
    We study theoretically the phoretic motion of a spheroidal particle, which generates solute gradients in the surrounding unbounded solvent via chemical reactions active on its surface in a cap-like region centered at one of the poles of the particle. We derive, within the constraints of the mapping to classical diffusio-phoresis, an analytical expression for the phoretic velocity of such an object. This allows us to analyze in detail the dependence of the velocity on the aspect ratio of the polar and the equatorial diameters of the particle and on the fraction of the particle surface contributing to the chemical reaction. The particular cases of a sphere and of an approximation for a needle-like particle, which are the most common shapes employed in experimental realizations of such self-propelled objects, are obtained from the general solution in the limits that the aspect ratio approaches one or becomes very large, respectively.Comment: 18 pages, 5 figures, to appear in European Physical Journal

    The damping width of giant dipole resonances of cold and hot nuclei: a macroscopic model

    Get PDF
    A phenomenological macroscopic model of the Giant Dipole Resonance (GDR) damping width of cold- and hot-nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi Liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface- and volume-components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides, 39,40^{39,40}K, 42^{42}Ca, 45^{45}Sc, 59,63^{59,63}Cu, 109120^{109-120}Sn,147^{147}Eu, 194^{194}Hg, and 208^{208}Pb, and is compared with the predictions of other models.Comment: 10 pages, 5 figure

    Gamma-ray strength function and pygmy resonance in rare earth nuclei

    Full text link
    The gamma-ray strength function for gamma energies in the 1-7 MeV region has been measured for 161,162-Dy and 171,172-Yb using the (3-He,alpha gamma) reaction. Various models are tested against the observed gamma-ray strength functions. The best description is based on the Kadmenskii, Markushev and Furman E1 model with constant temperature and the Lorentzian M1 model. A gamma-ray bump observed at E_gamma=3 MeV is interpreted as the so-called pygmy resonance, which has also been observed previously in (n,gamma) experiments. The parameters for this resonance have been determined and compared to the available systematics.Comment: 11 pages, including 4 figures and 2 table

    Walking Behavior in Technicolored GUTs

    Full text link
    There exist two ways to obtain walk behavior: assuming a large number of technifermions in the fundamental representation of the technicolor (TC) gauge group, or a small number of technifermions, assuming that these fermions are in higher-dimensional representations of the TC group. We propose a scheme to obtain the walking behavior based on technicolored GUTs (TGUTs), where elementary scalars with the TC degree of freedom may remain in the theory after the GUT symmetry breaking.Comment: 11 pages, 1 figur

    New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production

    Full text link
    Since the work of Sauter, and Heisenberg, Euler and K\"ockel, it has been understood that vacuum polarization effects in quantum electrodynamics (QED) predict remarkable new phenomena such as light-light scattering and pair production from vacuum. However, these fundamental effects are difficult to probe experimentally because they are very weak, and they are difficult to analyze theoretically because they are highly nonlinear and/or nonperturbative. The Extreme Light Infrastructure (ELI) project offers the possibility of a new window into this largely unexplored world. I review these ideas, along with some new results, explaining why quantum field theorists are so interested in this rapidly developing field of laser science. I concentrate on the theoretical tools that have been developed to analyze nonperturbative vacuum pair production.Comment: 20 pages, 9 figures; Key Lecture at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields", 29 Sept - 2 Oct. 2008, Frauenworth Monastery, Germany; v2: refs updated, English translations of reviews of Nikishov and Ritu
    corecore