1,543 research outputs found

    Exciton dynamics in solid-state green fluorescent protein

    Get PDF
    We study the decay characteristics of Frenkel excitons in solid-state enhanced green fluorescent protein (eGFP) dried from solution. We further monitor the changes of the radiative exciton decay over time by crossing the phase transition from the solved to the solid state. Complex interactions between protonated and deprotonated states in solid-state eGFP can be identified from temperature-dependent and time-resolved fluorescence experiments that further allow the determination of activation energies for each identified process.PostprintPeer reviewe

    Competing exciton localization effects due to disorder and shallow defects in semiconductor alloys

    Get PDF
    We demonstrate that excitons in semiconductor alloys are subject to competing localization effects due to disorder (random potential fluctuations) and shallow point defects (impurities). The relative importance of these effects varies with alloy chemical composition, impurity activation energy as well as temperature. We evaluate this effect quantitatively for MgxZn1−xO : Al (0 6 x 6 0.058) and find that exciton localization at low (2 K) and high (300 K) temperatures is dominated by shallow donor impurities and alloy disorder, respectively

    Three-dimensional photonic confinement in imprinted liquid crystalline pillar microcavities

    Get PDF
    Sv.H. acknowledges financial support by the EPSRC ”Hybrid Polaritonics” Grant (EP/M025330/1). F.W. thanks the Deutsche Forschungsgemeinschaft (DFG) for financial support (WU317/18-1).We demonstrate the feasibility of a thermal imprint technology capable of structuring organic thin films with liquid crystalline properties forming feature sizes on a several micrometer scale. The imprint technique can directly be applied onto a variety of substrates including dielectric mirrors. The so fabricated three-dimensional microcavities have lateral extensions up to 20 µm and heights between 1 and 5 µm. Exemplarily, pillar microcavities were produced wherein three-dimensional photonic confinement is observed by the formation of 0D cavity mode patterns. The imprint technique further favors the formation of hemispherical pillar geometries rather than cylindrical pillars resulting in equidistant mode spacings of transversal cavity modes.PostprintPeer reviewe

    Influence of optical material properties on strong coupling in organic semiconductor based microcavities

    Get PDF
    The optical properties of organic semiconductors are generally characterised by a number of material specific parameters, including absorbance, photoluminescence quantum yield, Stokes shift, and molecular orientation. Here, we study four different organic semiconductors and compare their optical properties to the characteristics of the exciton-polaritons that are formed when these materials are introduced into metal-clad microcavities. We find that the strength of coupling between cavity photons and excitons is clearly correlated with the absorptivity of the material. In addition, we show that anisotropy strongly affects the characteristics of the formed exciton-polaritons

    Room temperature Tamm-Plasmon exciton-polaritons with a WSe2 monolayer

    Get PDF
    This work has been supported by the State of Bavaria. A.K. and S.H. acknowledge the partial financial support from the EPSRC Hybrid Polaritonics Programme. C.S. acknowledges financial support by the European Research Council (unLiMIt-2D project).Solid state cavity quantum electrodynamics is a rapidly advancing field which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, since they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure, and study the coupling to a monolayer of WSe2, hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasi-particles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of non-linearities, macroscopic coherence and advanced spinor physics with novel, low mass bosons.Publisher PDFPeer reviewe

    Phonon-assisted lasing in ZnO microwires at room temperature

    Get PDF
    We report on room temperature phonon-assisted whispering gallery mode (WGM) lasing in ZnO microwires. For WGM laser action on the basis of the low gain phonon scattering process high quality resonators with sharp corners and smooth facets are prerequisite. Above the excitation threshold power PTh of typically 100 kW/cm2, the recombination of free excitons under emission of two longitudinal optical phonons provides sufficient gain to overcome all losses in the microresonator and to result in laser oscillation. This threshold behavior is accompanied by a distinct change of the far and near field emission patterns, revealing the WGM related nature of the lasing modes. The spectral evolution as well as the characteristic behavior of the integrated photoluminescence intensity versus the excitation power unambiguously proves laser operation. Polarization-resolved measurements show that the laser emission is linear polarized perpendicular to the microwire axis (TE)

    Optofluidic distributed feedback lasers with evanescent pumping : reduced threshold and angular dispersion analysis

    Get PDF
    The authors acknowledge financial support from the European Research Council (ERC StG ABLASE, 640012), the Scottish Funding Council (via SUPA) and the European Union Marie Curie Career Integration Grant (PCIG12-GA-2012-334407). M.K. and G.L.W. acknowledge funding from the EPSRC DTG (EP/M506631/1 and EP/K503162/1). M.S. acknowledges funding from the European Commission for a Marie Sklodowska-Curie Individual Fellowship (659213). I.D.W.S. acknowledges funding from a Royal Society Wolfson research merit award. The research data supporting this publication can be accessed at http://dx.doi.org/10.17630/0ed7dad7-75e1-4ab9-9845-c455d1a7c6a4.We demonstrate an evanescently pumped water-based optofluidic DFB laser with a record low pump threshold of ETH = 520 nJ. The low threshold results from an optimized mode shape, which is achieved by a low refractive index substrate, and from the use of a mixed-order DFB grating. Investigating the photonic band structure via angular dispersion analysis both above and below lasing threshold allows us to measure the refractive index of the liquid gain layer and to determine device parameters such as the waveguide core layer thickness. We show that it is possible to tailor the divergence of the lasing emission by varying the number of second order grating periods used for outcoupling.Publisher PDFPeer reviewe

    Tunable light-matter hybridization in open organic microcavities

    Get PDF
    Sv.H. acknowledges funding by the EPSRC ”Hybrid Polaritonics” Grant (EP/M025330/1), F.W. further thanks the Deutsche Forschungsgemeinschaft (DFG) for financial support (WU317/18-1). J.S. and A.A.P.T. thank the Leverhulme Trust (RPG-2012-526) and the UK Engineering and Physical Sciences Research Council (EP/M013243/1) for financial support.Open microcavities represent a versatile cavity design that allows the external control of internal properties such as cavity thickness and mode detuning without changing the key parameters of the cavity itself, rendering them particularly interesting for light-matter interaction experiments. Here, we demonstrate the tunability of an open microcavity with an embedded active organic layer providing parallel alignment of molecular transition dipole moments as well as strong self-absorption inside the cavity. By decreasing the cavity thickness, we observe a transition from the weak coupling regime into the strong coupling regime evidenced by the onset of avoided crossing behavior between involved modes. This change of coupling mechanism is shown for 2D (planar) as well as 0D (hemispherical) cavities.PostprintPeer reviewe

    A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor

    Get PDF
    Carbon monoxide (CO) is an important atmospheric constituent affecting air quality, and methane (CH4_{4}) is the second most important greenhouse gas contributing to human-induced climate change. Detailed and continuous observations of these gases are necessary to better assess their impact on climate and atmospheric pollution. While surface and airborne measurements are able to accurately determine atmospheric abundances on local scales, global coverage can only be achieved using satellite instruments. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, which was successfully launched in October 2017, is a spaceborne nadirviewing imaging spectrometer measuring solar radiation reflected by the Earth in a push-broom configuration. It has a wide swath on the terrestrial surface and covers wavelength bands between the ultraviolet (UV) and the shortwave infrared (SWIR), combining a high spatial resolution with daily global coverage. These characteristics enable the determination of both gases with an unprecedented level of detail on a global scale, introducing new areas of application. Abundances of the atmospheric column-averaged dry air mole fractions XCO and XCH4_{4} are simultaneously retrieved from TROPOMI’s radiance measurements in the 2:3 μm spectral range of the SWIR part of the solar spectrum using the scientific retrieval algorithm Weighting Function Modified Differential Optical Absorption Spectroscopy (WFMDOAS). This algorithm is intended to be used with the operational algorithms for mutual verification and to provide new geophysical insights. We introduce the algorithm in detail, including expected error characteristics based on synthetic data, a machine-learning-based quality filter, and a shallow learning calibration procedure applied in the post-processing of the XCH4_{4} data. The quality of the results based on real TROPOMI data is assessed by validation with ground-based Fourier transform spectrometer (FTS) measurements providing realistic error estimates of the satellite data: the XCO data set is characterised by a random error of 5:1 ppb (5:8 %) and a systematic error of 1:9 ppb (2:1 %); the XCH4_{4} data set exhibits a random error of 14:0 ppb (0:8 %) and a systematic error of 4:3 ppb (0:2 %). The natural XCO and XCH4_{4} variations are well-captured by the satellite retrievals, which is demonstrated by a high correlation with the validation data (R = 0:97 for XCO and R D 0:91 for XCH4_{4} based on daily averages). We also present selected results from the mission start until the end of 2018, including a first comparison to the operational products and examples of the detection of emission sources in a single satellite overpass, such as CO emissions from the steel industry and CH4_{4} emissions from the energy sector, which potentially allows for the advance of emission monitoring and air quality assessments to an entirely new level
    corecore