8 research outputs found

    Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine – a review

    Get PDF
    Purpose The impact on patients’ health of radiopharmaceuticals in nuclear medicine diagnostics has not until now been evaluated systematically in a European context. Therefore, as part of the EU-funded Project PEDDOSE. NET (www.peddose.net), we review and summarize the current knowledge on biokinetics and dosimetry of commonly used diagnostic radiopharmaceuticals. Methods A detailed literature search on published biokinetic and dosimetric data was performed mostly via PubMed (www.ncbi.nlm.nih.gov/pubmed). In principle the criteria for inclusion of data followed the EANM Dosimetry Committee guidance document on good clinical reporting. Results Data on dosimetry and biokinetics can be difficult to find, are scattered in various journals and, especially in paediatric nuclear medicine, are very scarce. The data collection and calculation methods vary with respect to the time-points, bladder voiding, dose assessment after the last data point and the way the effective dose was calculated. In many studies the number of subjects included for obtaining biokinetic and dosimetry data was fewer than ten, and some of the biokinetic data were acquired more than 20 years ago. Conclusion It would be of interest to generate new data on biokinetics and dosimetry in diagnostic nuclear medicine using state-of-the-art equipment and more uniform dosimetry protocols. For easier public access to dosimetry data for diagnostic radiopharmaceuticals, a database containing these data should be created and maintained

    Metrics, Dose, and Dose Concept: The Need for a Proper Dose Concept in the Risk Assessment of Nanoparticles

    Get PDF
    In: International Journal of Environmental Research and Public Health, Vol. 11 (2014), No. 4, 4026-4048; DOI: 10.3390/ijerph110404026In order to calculate the dose for nanoparticles (NP), (i) relevant information about the dose metrics and (ii) a proper dose concept are crucial. Since the appropriate metrics for NP toxicity are yet to be elaborated, a general dose calculation model for nanomaterials is not available. Here we propose how to develop a dose assessment model for NP in analogy to the radiation protection dose calculation, introducing the so-called “deposited and the equivalent dose”. As a dose metric we propose the total deposited NP surface area (SA), which has been shown frequently to determine toxicological responses e.g. of lung tissue. The deposited NP dose is proportional to the total surface area of deposited NP per tissue mass, and takes into account primary and agglomerated NP. By using several weighting factors the equivalent dose additionally takes into account various physico-chemical properties of the NP which are influencing the biological responses. These weighting factors consider the specific surface area, the surface textures, the zeta-potential as a measure for surface charge, the particle morphology such as the shape and the length-to-diameter ratio (aspect ratio), the band gap energy levels of metal and metal oxide NP, and the particle dissolution rate. Furthermore, we discuss how these weighting factors influence the equivalent dose of the deposited NP

    Joint EURADOS-EANM initiative for an advanced computational framework for the assessment of external dose rates from nuclear medicine patients

    Get PDF
    International audienceAbstract Background In order to ensure adequate radiation protection of critical groups such as staff, caregivers and the general public coming into proximity of nuclear medicine (NM) patients, it is necessary to consider the impact of the radiation emitted by the patients during their stay at the hospital or after leaving the hospital. Current risk assessments are based on ambient dose rate measurements in a single position at a specified distance from the patient and carried out at several time points after administration of the radiopharmaceutical to estimate the whole-body retention. The limitations of such an approach are addressed in this study by developing and validating a more advanced computational dosimetry approach using Monte Carlo (MC) simulations in combination with flexible and realistic computational phantoms and time activity distribution curves from reference biokinetic models. Results Measurements of the ambient dose rate equivalent Ḣ * (10) at 1 m from the NM patient have been successfully compared against MC simulations with 5 different codes using the ICRP adult reference computational voxel phantoms, for typical clinical procedures with 99m Tc-HDP/MDP, 18 FDG and Na 131 I. All measurement data fall in the 95% confidence intervals, determined for the average simulated results. Moreover, the different MC codes (MCNP-X, PHITS, GATE, GEANT4, TRIPOLI-4 ® ) have been compared for a more realistic scenario where the effective dose rate Ė of an exposed individual was determined in positions facing and aside the patient model at 30 cm, 50 cm and 100 cm. The variation between codes was lower than 8% for all the radiopharmaceuticals at 1 m, and varied from 5 to 16% for the face-to face and side-by-side configuration at 30 cm and 50 cm. A sensitivity study on the influence of patient model morphology demonstrated that the relative standard deviation of Ḣ * (10) at 1 m for the range of included patient models remained under 16% for time points up to 120 min post administration. Conclusions The validated computational approach will be further used for the evaluation of effective dose rates per unit administered activity for a variety of close-contact configurations and a range of radiopharmaceuticals as part of risk assessment studies. Together with the choice of appropriate dose constraints this would facilitate the setting of release criteria and patient restrictions
    corecore